Coverage-Based Testing of Obligations in
NGAC Systems

Erzhuo Chen, Vladislav Dubrovenski, Dianxiang Xu
University of Missouri — Kansas City
{vadpb7, lcrnd, dxu} @umsystem.edu




Background

* NGAC (Next Generation Access Control), a new access
control standard

* Proposed by NIST (National Institute of Standards and
Technology)

« Designed to address limitations: limited flexibility,
difficulty in managing policies, and limited interoperability

/ Configuration i \

1

I
Permissions :
(assignments & Prohibitions : Obligations
associations) :

1

I

\ attributes (users, objects, access rights) /




/4
Configuration

Configuration C = <U,UA,0,0A,AR,PC,ASSIGN,ASSOCIATION,PROHIBITION>:

o U: set of users

UA: set of user attributes
O: set of objects

OA: set of object attributes
AR: set of all access rights
PC: set of policy classes
ASSIGN & ASSOCIATION & PROHIBITION: three sets of

relations defined on policy elements

Attorney PR S NewCase
{modify, withdraw, delete

Law Firm

UMKC



/4
Obligation

<event pattern>::=[<user spec>] [<pc sepc>] <op spec> [<pe spec>]
<response>::=<response condition> <conditional action> {,<conditional action>}
<response condition>:=[if <condition> then|

<conditional action>::=[if <condition> then|<action>{,<action>}
<condition>::=<factor>{and <factor>}

SAMPLE Obligation ¢
Event: (supervisor, delete, alex)

Response:
If alex exists then

Actions:

If —alex.Loan A supervisor.OfficeHour then
delete (alex, accounts)

If —(alex, accounts) then delete object alex




Problem Statement

 NGAC is highly expressive and flexible, enabling creating complex
access control policies. Additionally, it allows for dynamic changes to

polices.

 However, there is a lack of work on quality assurance of NGAC
policies. Meanwhile, the dynamic privilege changes through
obligations come with potential concerns about errors and harm to
the authorization state, leading to unauthorized access, privilege
escalation, and denial of service.

« My research aims to investigate methods for ensuring the quality of
obligations.

UMKC



Approach

Coverage-based test generation method:
1. Define a family of coverage criteria
2. Generate constraints for satisfying coverage criterion

3. Solve constraints by a SMT-based solver
“SMT-Based Verification of NGAC Policies”. V. Dubrovenski, E. Chen, and D. Xu. 2023.

4. Translate the solution into tests

UMKC




/4
Obligation Test

Format of an obligation test:
— Test input:
A sequence of access requests, {q4,d,,.--,d,}-
— Test oracle:
Expected configuration changes, {O,,0,,...,0,}.

t={{q1, 04}, {q2 O}, ... {q,, O}, where g, represents access
request and O, represents the expected configuration
changes after the permitted access q, occurs.

UMKC




Coverage Criteria

Obligation Coverage (OC):
— each obligation is triggered once

» Action Coverage (AC): Ohbligationy ,
_ _ Event: (supervisor, delete, alex)
— each action applies once Response:
* Decision Coverage (DC): If alex exists then
— each outcome (true/false) of Actions:

decision is covered
Factor/Decision Coverage (FDC):

If —alex.Loan A supervisor.OfficeHour then
delete (alex, accounts)
If —(alex, accounts) then delete object alex

— each outcome (true/false) of
factor combinations is covered

— each factor independently affects
the outcome

UMKC




Algorithm for generating OC tests

Function name: GenerateTestForOC
Input: Policy P = (Cp, @), Cp is initial configuration, & is
initial obligation
Output: KnownSeguences is a set of distinct event sequences
1 foreach ¢ in ¢ do
foreach sequence in KnownSequences do

. g 3 if event(¢) in sequence then
6)11gat10n ¢ \ 1 L | continue;

Event: (supervisor, delete, alex) s | newsSeq  seqFinder(P.g):
RCSPOHSGZ 6 if newSeq = null then
. continue;
If alex exists then L
. 8 update «— true;
Actions: 9 foreach sequence in KnownSequences do
If =alex.Loan A supervisor.OﬁiceHour then 10 if isS;?fuenceC;v;red{sequencE, newSeq) then
11 update «— faise;
delete (alex, accounts) 12 break:
Qf —{alex, accounts) then delete object alex 13 else
14 if isSequenceCovered(newSeq, sequence) then
15 L remove sequence from KnownSequences;

16 if update then
17 L add newSeg to KnownSequences;

18 return KnownSequences;




Algorithm for generating OC tests

Function name: GenerateTestForQC
Input: Policy P = (Cp, @), Cp is initial configuration, & is

G)Iigation ¢ \

Event: (supervisor, delete, alex)
Response:
If alex exists then
Actions:
If —alex.Loan A supervisor.OfficeHour then
delete (alex, accounts)

Qf —{alex, accounts) then delete object alex

newSeq={q1,92,q3,q4} and
an old seq={q1,93}
=> only keep {q1,92,93,94}

UMKC

2
3
4

16
17

initial obligation

Output: KnownSeguences is a set of distinct event sequences
1 foreach ¢ in ¢ do

foreach sequence in KnownSequences do
if event(¢) in sequence then
|_ continue;

newSeq «— seqFinder(F,¢);
if newSeq = null then
L continue;

update «— true;

foreach sequence in KnownSequences do

if isSequenceCovered(sequence, newSeq) then

update «— false;

break:

else

if isSequenceCovered(newSeq, sequence) then
L remove sequence from KnownSequences;

if update then
L add newSeg to KnownSequences;

18 return KnownSequences;




Algorithm for generating AC tests (part)

1 foreach action in obligation.response do
2 if action.covered then
3 L continuc;
4 if currentConstraints = null then
5 action.covered < true:
6bli g alan ¢ \ 6 cowemd(fmmt—l—'%—; |
. 7 currentConstraints < obC' A reC' A action.conC,
Event: (super visor, delete, alex) 8 solution < action.selfSolution;
Response: 9 solution.involvedActions < solution.involvedActions U action.index;
If alex exists then 10 | else
KeBlotis: 11 tmpConstraints < currentConstraints A\ action.conC
. 12 tmpSolution < solver( P tmpConstraints);
If ~alex.Loan A supervisor.OfficeHour then | if tmpSolution = null then
delete (alex, accounts) 14 | continue;
\If —(alex, accounts) then delete object W 15 else
16 action.covered < true;
17 coveredCount++;
18 currentConstraints < tmpConstraints;
19 solution < tmpSolution;
20 solution.involvedActions < solution.involvedActions U action.index:;




Evaluation: subject policies

#PC | #UA | #OA | #ASM | #ASC | #PRO | #OBL
Bank 2 6 10 33 6 - -
GPMS 4 34 27 91 3 - 19

Bank:
An access control system of the management structure of a bank system.

GPMS:

A web-based application that aims to automate the grant proposal approval
workflow at an academic institution.

UMKC




-/
Evaluation: obligation mutation operators

No Fault Type Mutation Operator No Fault Type Mutation Operator
1  Extra obligation ROB  Remove one OBligation 19 Wrong assignment ~ CDA  Change Descendant
2 Wrong subject CES  Change Event Subject descendant in Assign
3 Extra subject RES Remove Event Subject 20 Wrong assignment RDA  Reverse Direction
4 Wrong operation CEO  Change Event Operation direction of Assign
5 Missing operation AEO  Add Event Operation 21 Wrong grant subject CSG Change Subject in Grant
6 Extra operation REO  Remove Event Operation 22 Wrong grant target CTG  Change Target in Grant
7 Wrong target CET Change Event Target 23 Wrong access right CARG Change Access Right
8 Extra target RET Remove Event Target in grant in Grant
9 Extra condition ROC  Remove One Condition 24 Missing access right AARG Add Access Right
10 Negated condition NOC  Negate One Condition In grant in Grant
11 Extra condition ROF Remove One Factor 25 Extra access right RARG Remove Access Right
12 Negated condition NOF  Negate One Factor in grant in Grant
13 Extra action ROA  Remove One Action 26 Wrong subject CsD Change Subject in Deny
14 Wrong action COA  Change One Action in deny
15 Wrong ascendant CAC  Change Ascendant 27 Wrong target CTD  Change Target in Deny
in create in Create in deny
16 Wrong descendant CDC  Change Descendant 28 Wrong access right CARD Change Access Right
in create in Create in deny in Deny
17 Wrong direction RDC  Reverse Direction 29 Missing access right AARD Add Access Right
in create of Create in deny in Deny
18 Wrong assignment CASA Change AScendant 30 Add access right RARD Remove Access Right
ascendant in Assign in deny in Deny

UMKC




Mutation Scores (%) for GPMS-NGAC Mutation Scores (%) for Bank
Mutant Group #Mutants OC AC DC FDC  Mutant Group #Mutants OC AC DC FDC
event mutants 1548 87.3 875 875 875 event mutants 188 70.7 729 739 739
action mutants 5650 47 732 732 732 action mutants 78 0 3828 839 3839
condition mutants 168 0 381 851 917 condition mutants 18 0 385 692 69.2
overall 7366 220 755 766 76.8 overall 306 43,5 73.0 76.5 76.5
MKPR Scores

Subject OC AC DC FDC

GPMS-NGAC 344 624 433 3238

Bank 11.1 6.1 3.7 2.8

MS(Mutation Score) = #KM(Killed Mutants) / #NEM(Non-Equivalent Mutants)
MKPR(Mutants Killed Per Request) = #KM/ #Test

UMKC



I
Conclusions

* Presented the test coverage criteria for NGAC obligations

* Presented efficient methods for generating tests to satisfy
each coverage criterion

« Conducted empirical studies to evaluate the fault detection
capabilities and cost-effectiveness of these coverage-based
test generation methods

« FDC test suites, can provide a high level of confidence in the
correct enforcement of access control

UMKC



