Differential Privacy in querying RDF Knowledge Graphs

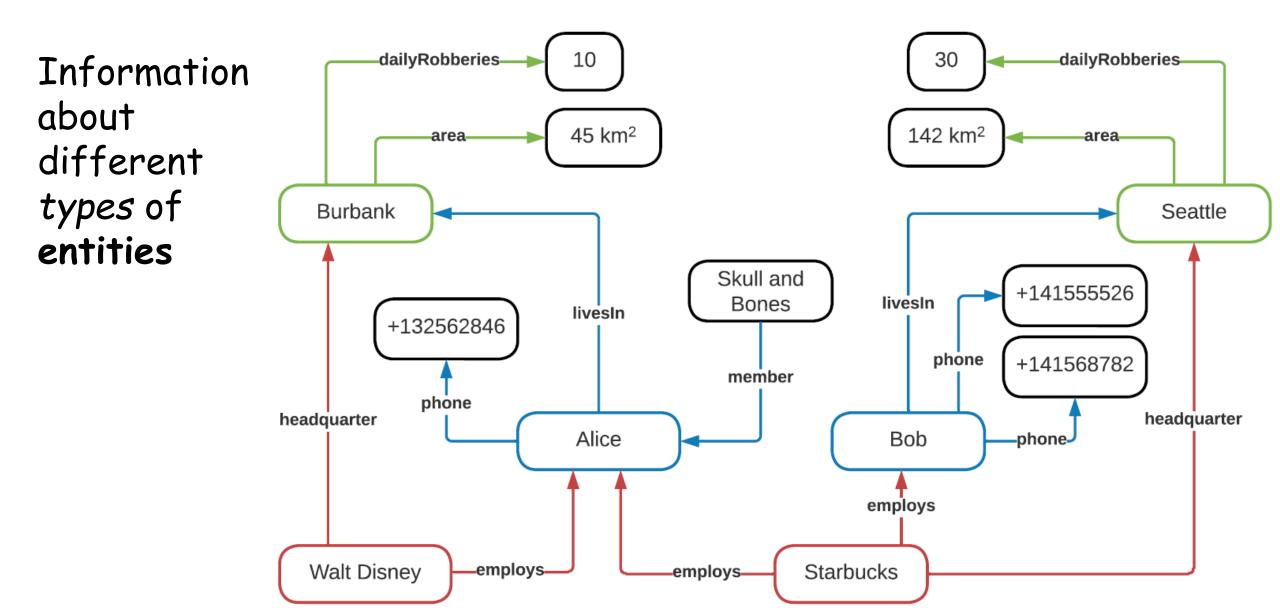
Jorge Lobo ICREA & UPF Barcelona, Spain

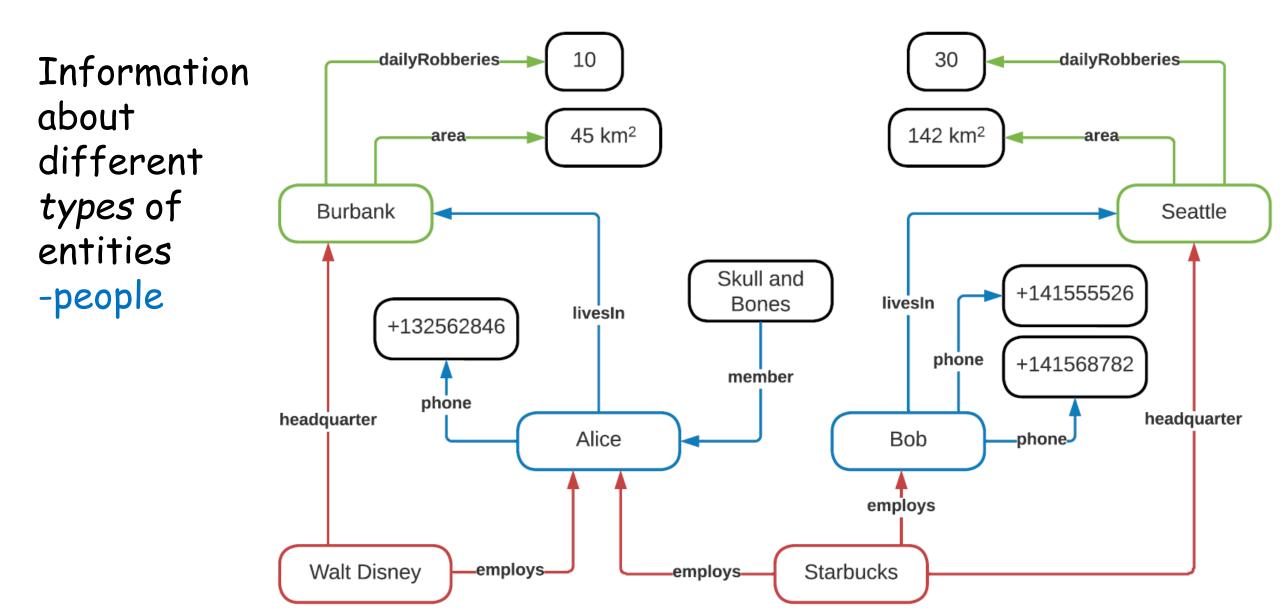
Carlos Buil Aranda

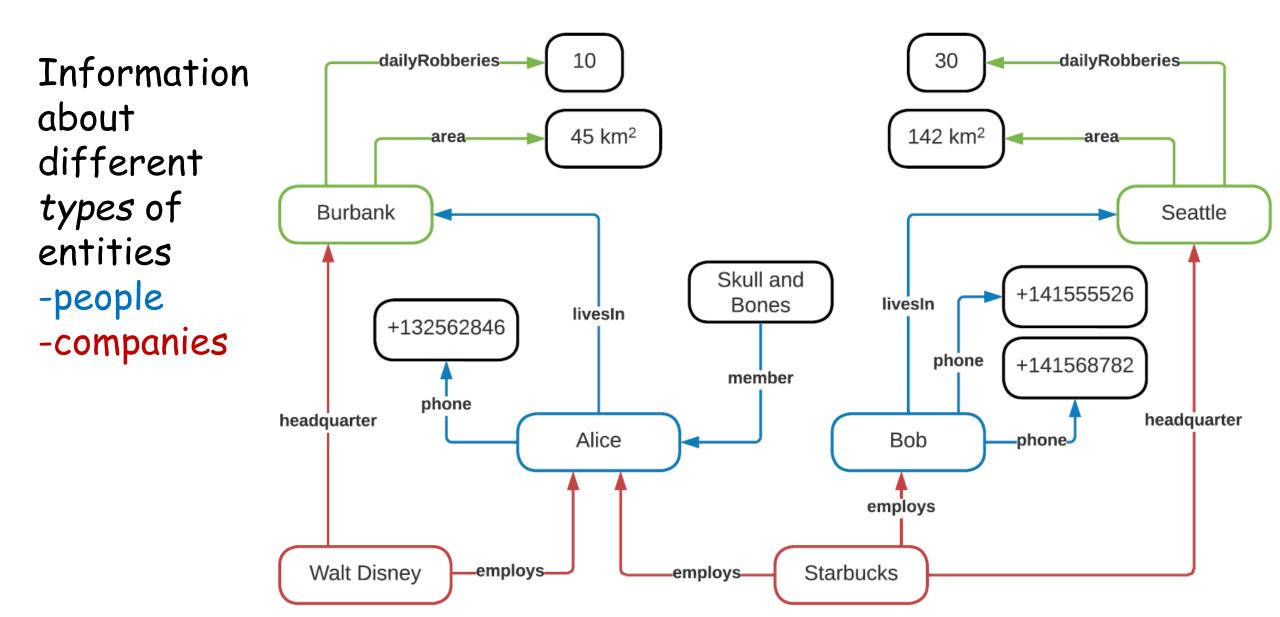
Universidad Técnica Federico Santa María and IMFD, Valparaiso, Chile

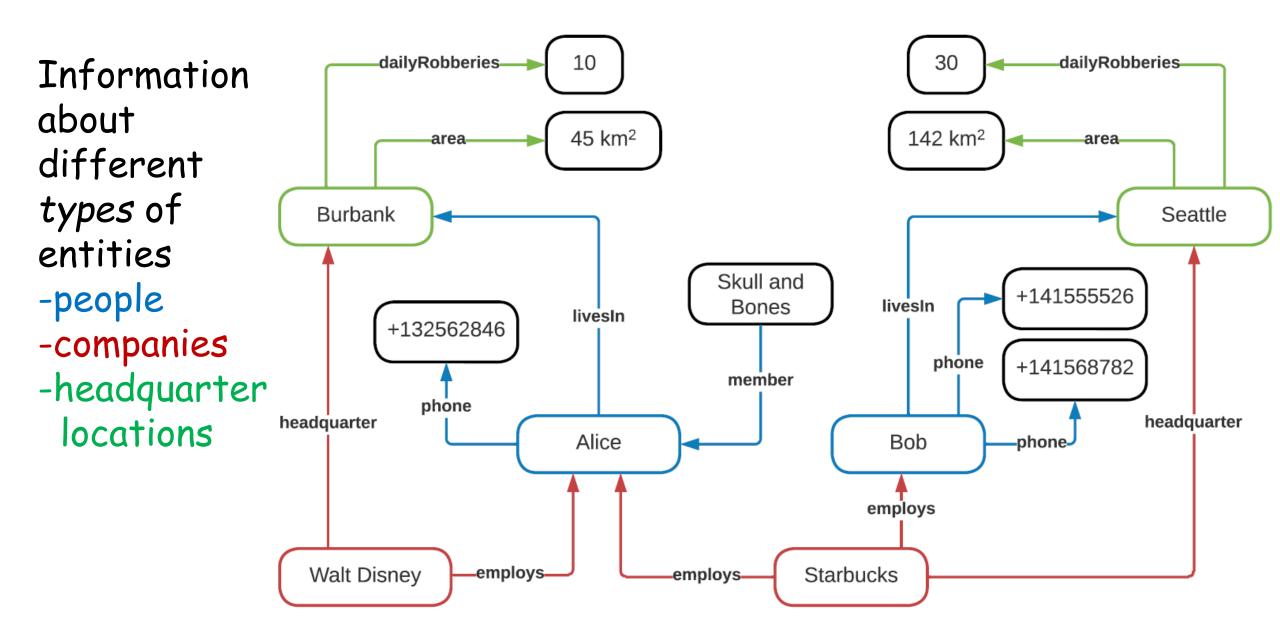
Federico Olmedo

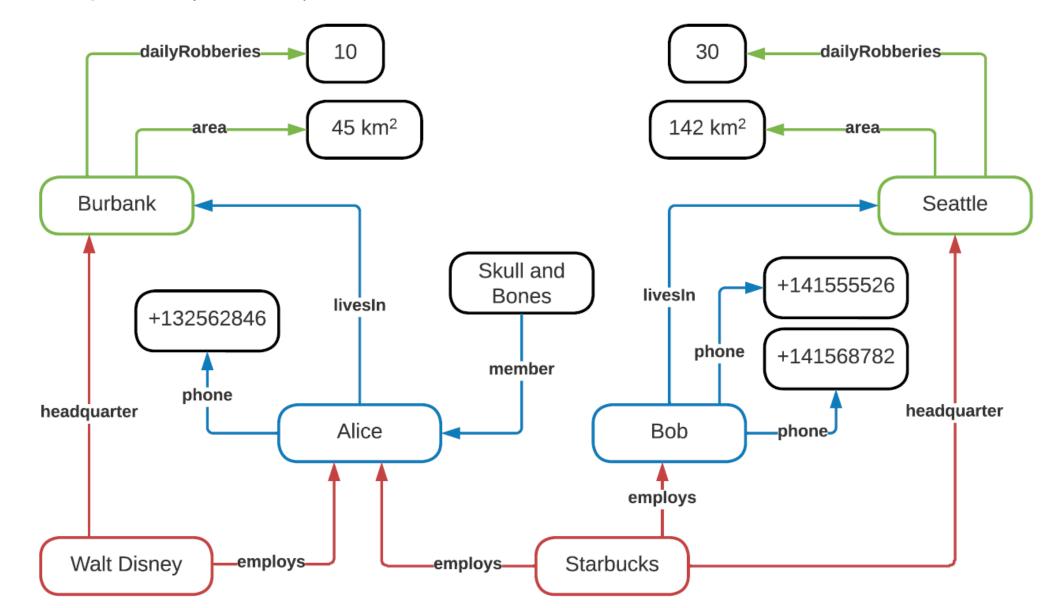
Universidad de Chile & IMFD Santiago, Chile

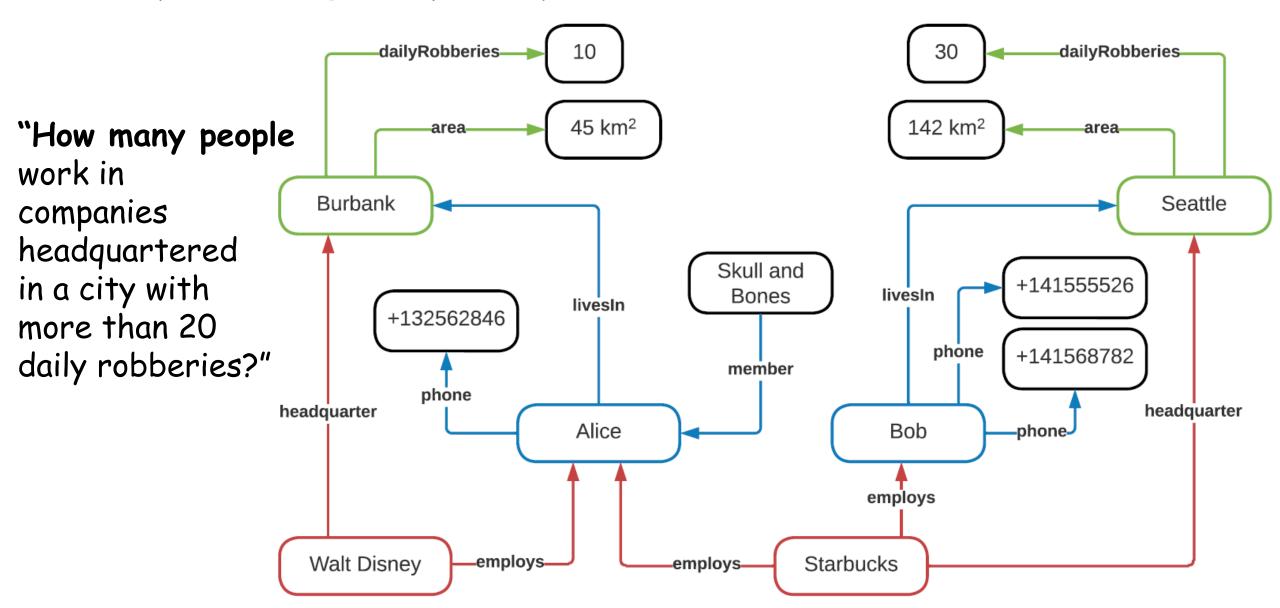


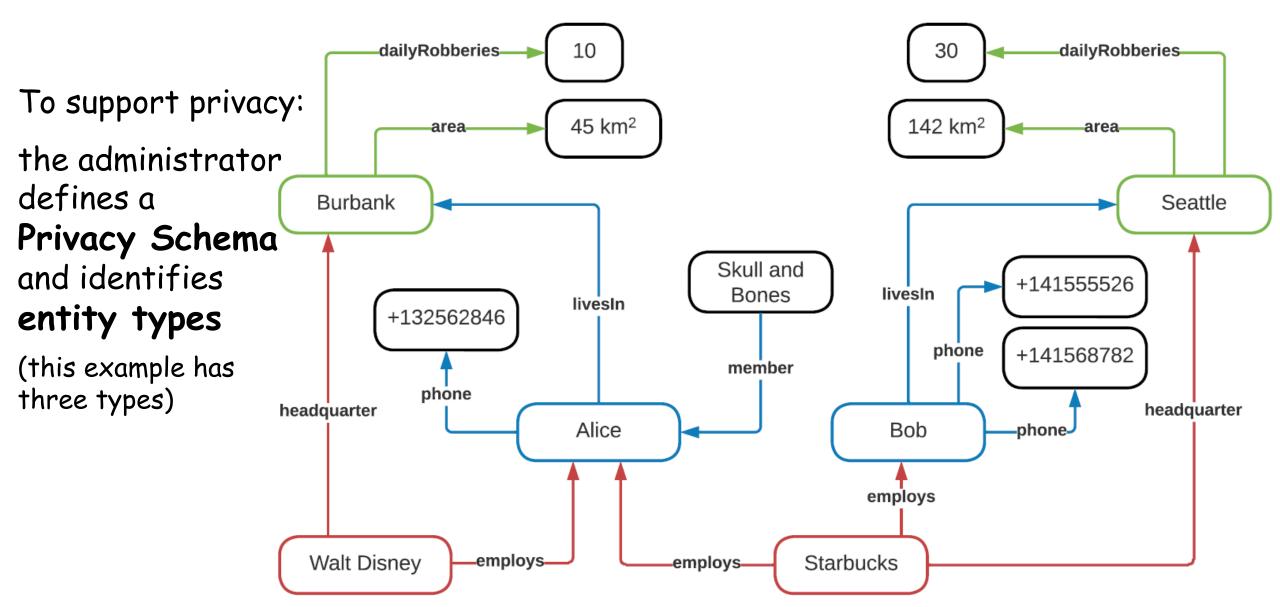


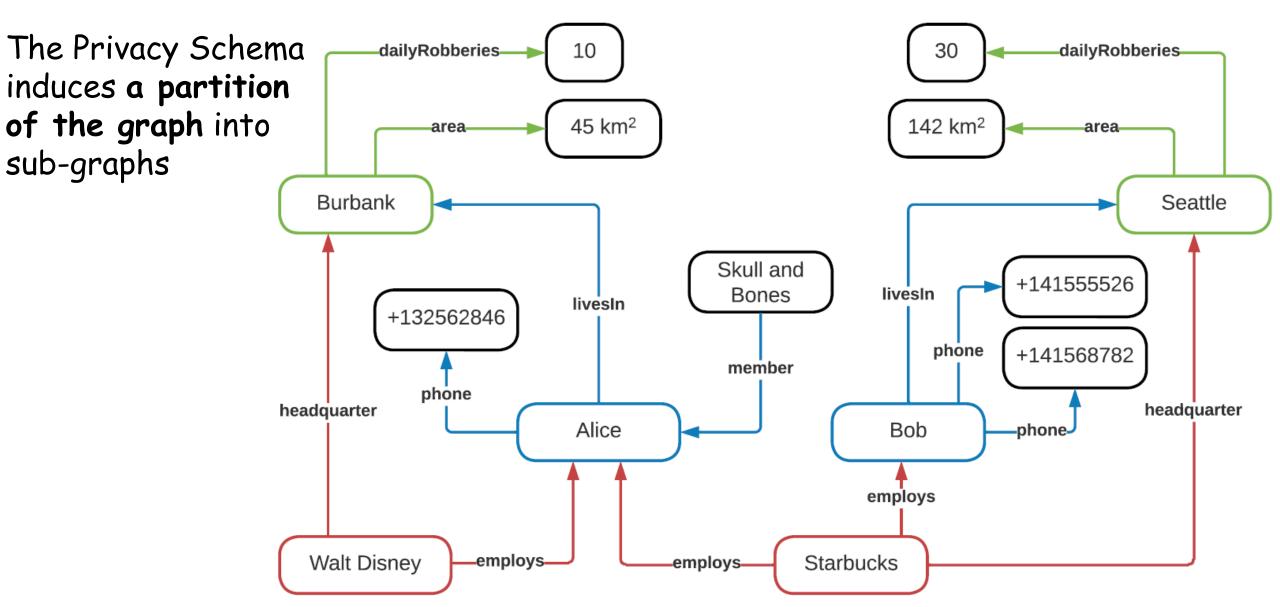


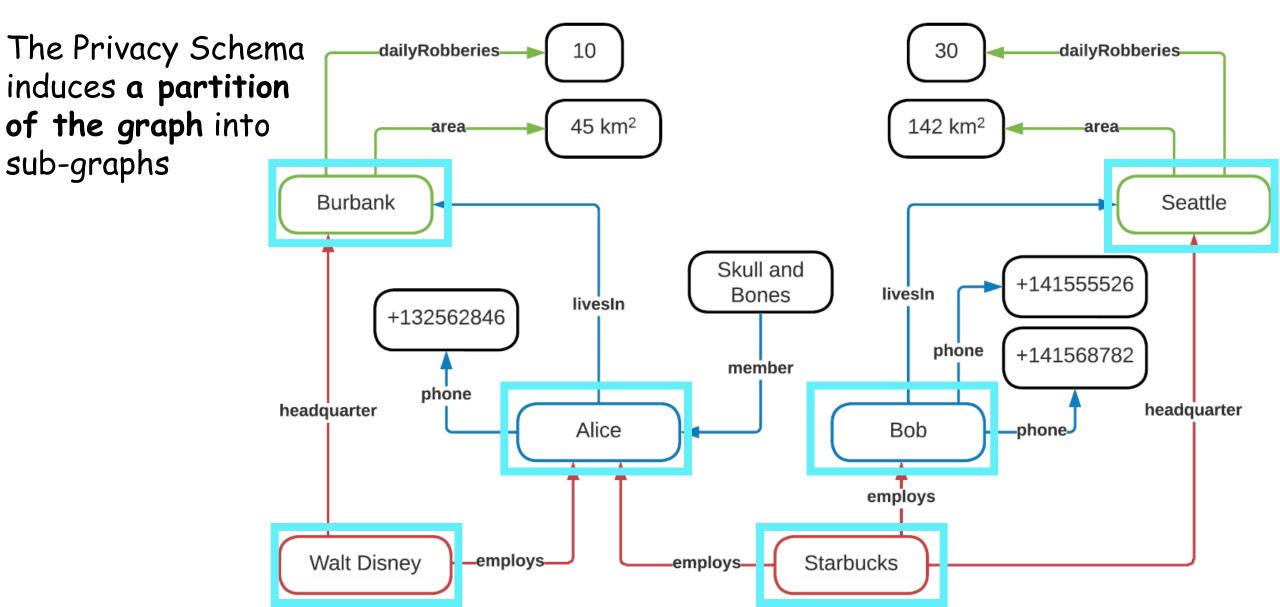


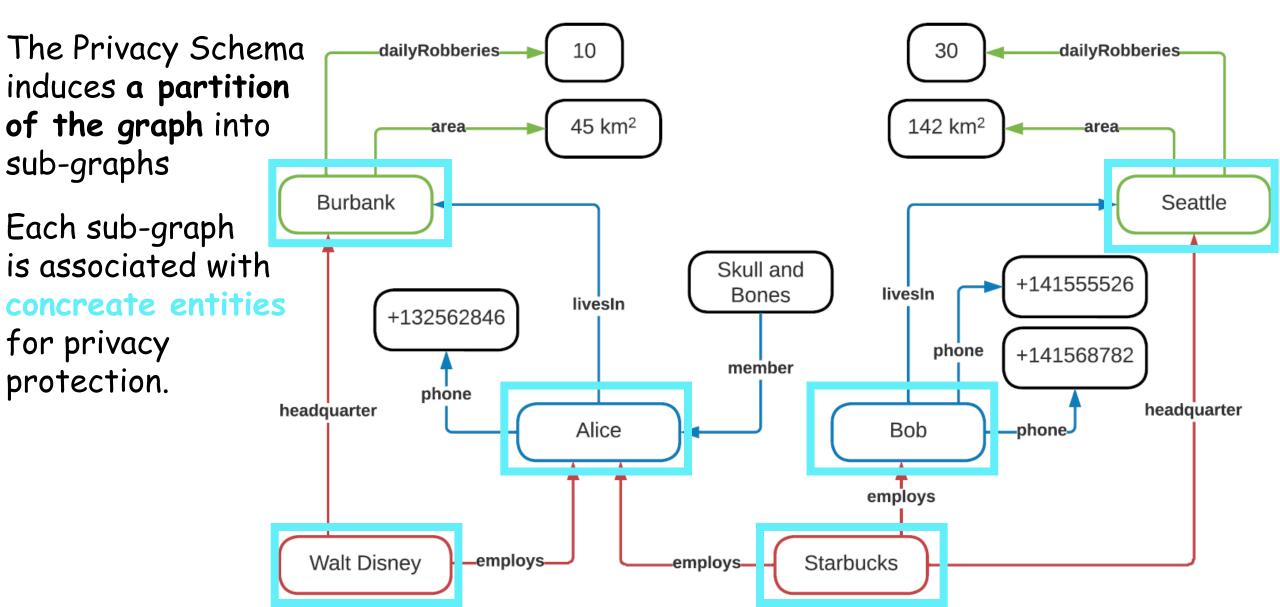


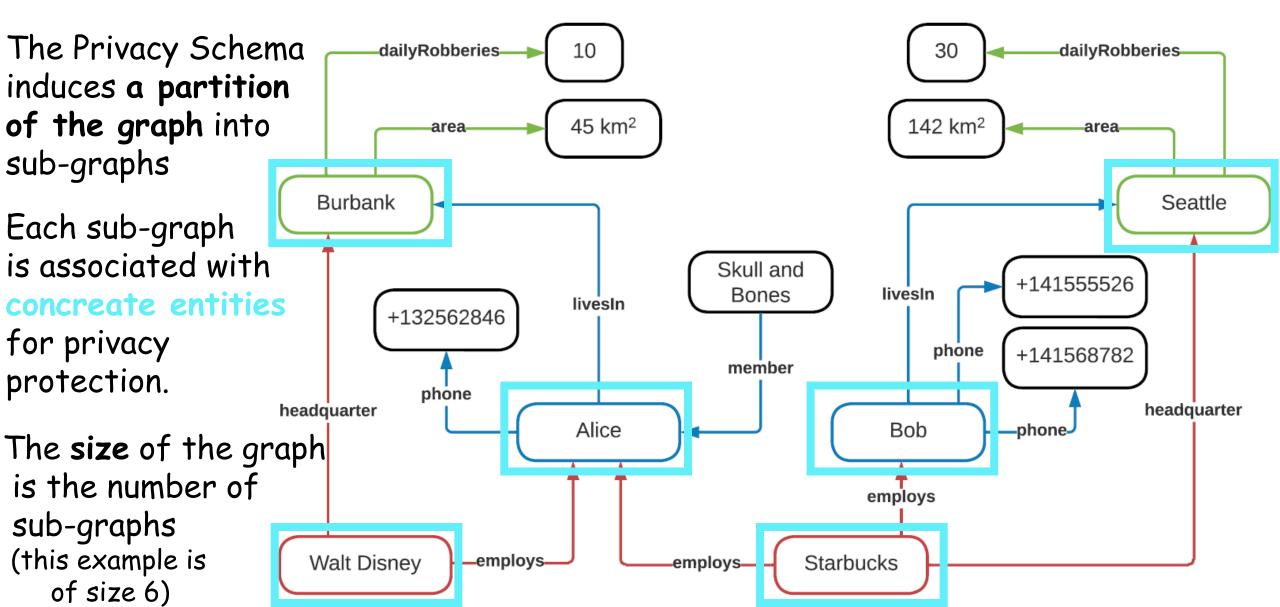


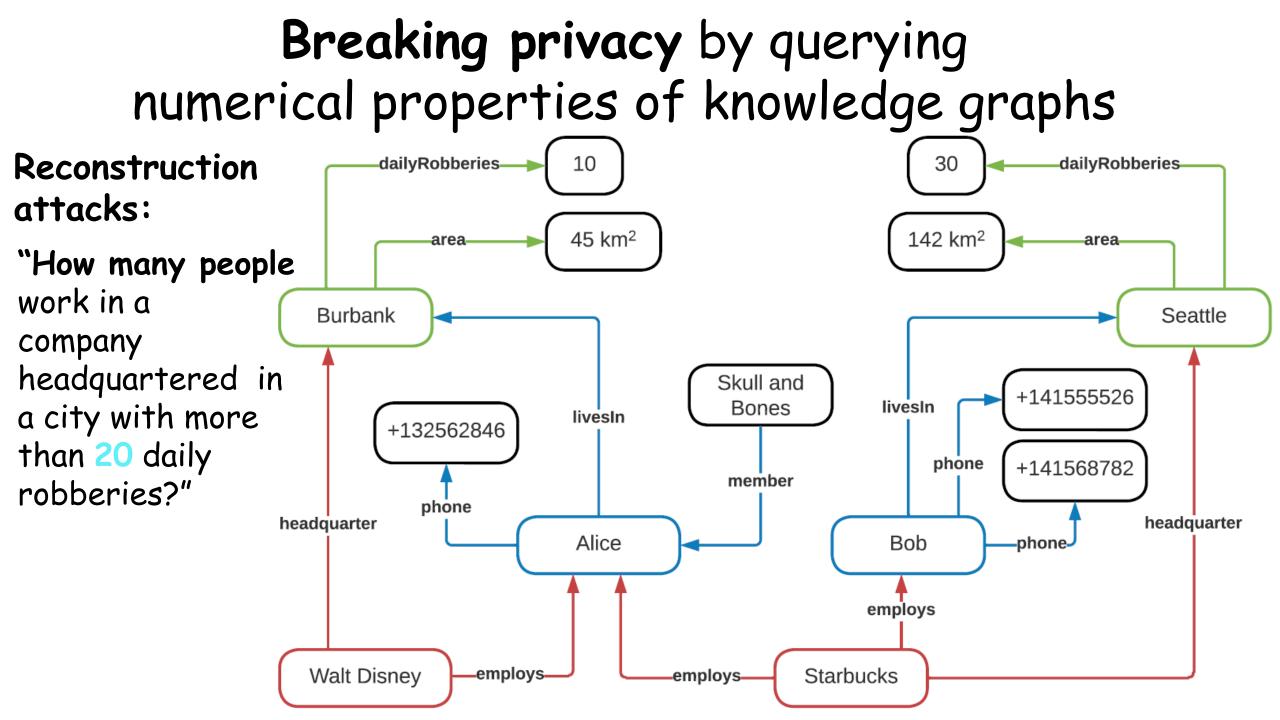


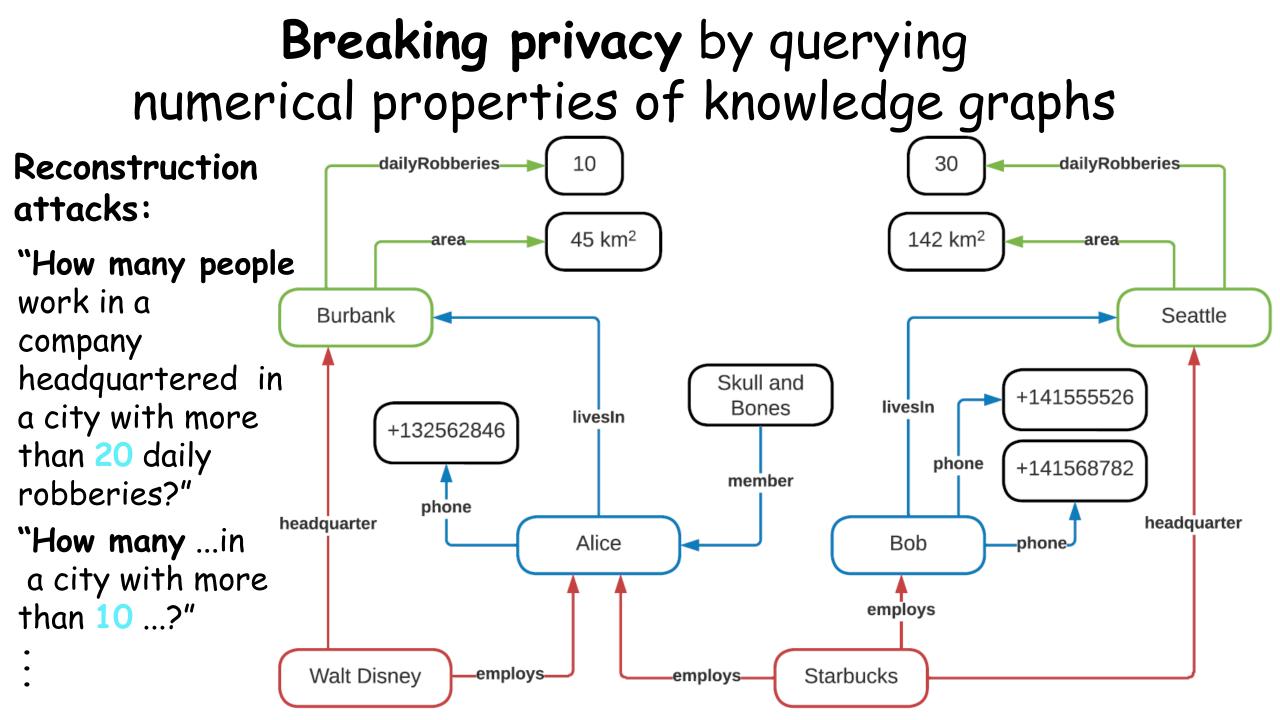










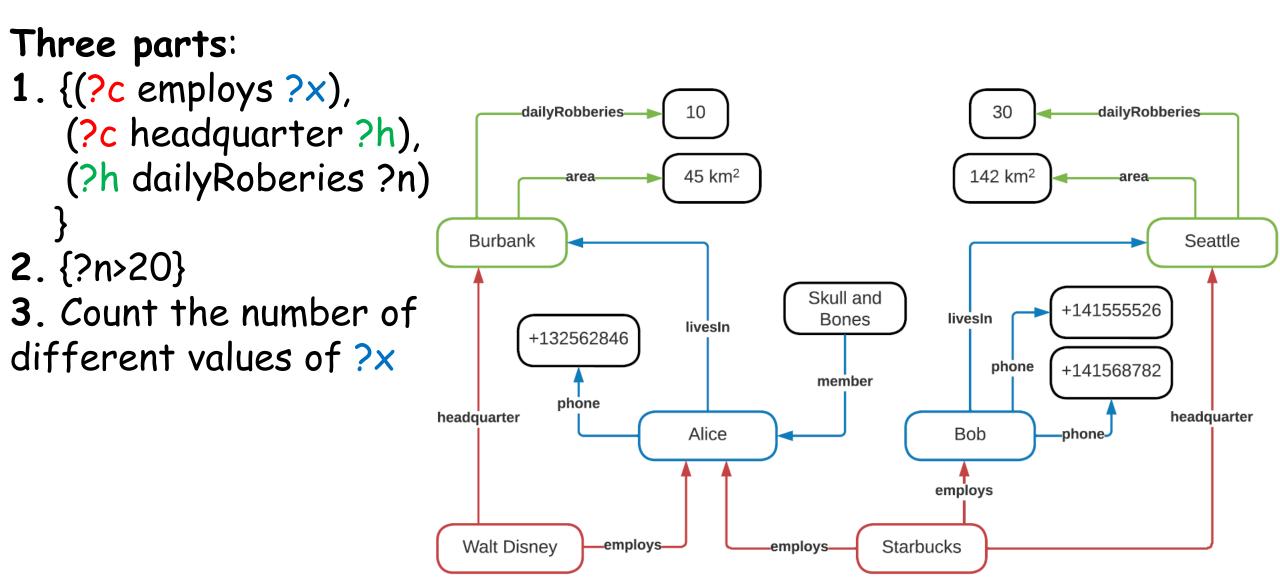


Differential Privacy in terms of RDF Graphs

Informal:

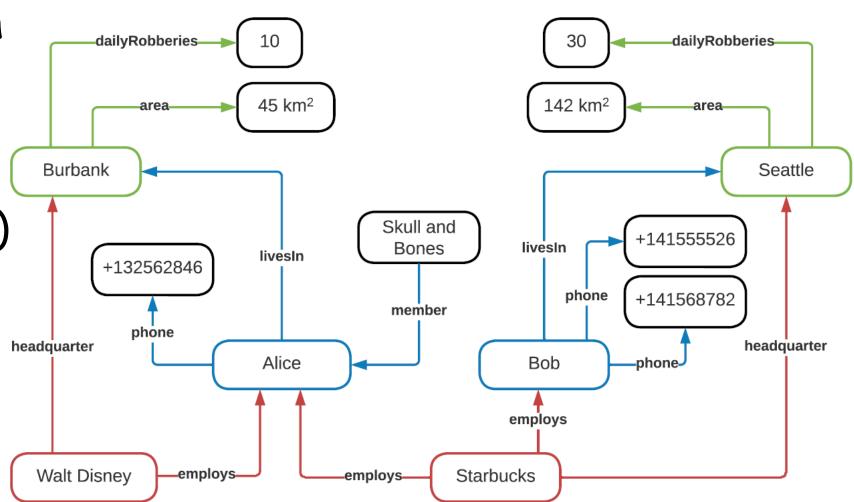
• Given the set of real numbers R and the universe G of all possible graphs, a numerical query $f: G \rightarrow R$, is said to be differentially private if it yields indistinguishable results when applied to similar graphs g and g'.

SPARQL Numerical queries on knowledge graphs



Similarities between knowledge graphs

A graph g' is at distance k of a graph g, d(g,g')=k, if g' can be obtained by changing (i.e. adding, deleting, or updating) subgraphs of g associated with k different entities.



Differential Privacy in terms of RDF Graphs

Formal:

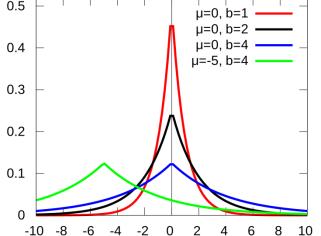
- Graphs g and g' are neighbors (similar) if d(g,g')=1
- Let $\epsilon, \delta \ge 0$. A randomized algorithm A is (ϵ, δ) -differentially private

if for every pair of neighboring graphs g, g' \in G and every set S \subseteq R Pr[A(g) \in S] $\leq e^{\epsilon}$ Pr[A(g') \in S] + δ

The smaller the ϵ and δ , the closer these two probabilities are, and therefore, the less likely an adversary can tell A(g) and A(g') apart

Randomizing SPARQL Numerical Queries

 On input g, return f(g) plus some noise sampled from a Laplacian distribution:



 Calibrate noise according to the local sensitivity LS_f of f with respect to a graph g, which measures f maximum variation upon neighboring graphs:

$$LS_{f}(g) = max_{d(g,g')=1} | f(g) - f(g')|.$$

Theorem (see K. Nissim et al.)

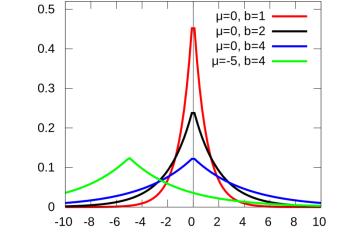
Given a numeric query $f\colon G\to R$ of local sensitivity $LS_f,$ and a smooth upper-bound U_f of $LS_f,$ the randomized algorithm

 $A(g) = f(g) + Lap(U_f(g)/\epsilon)$

is an (ϵ, δ) -differentially private version of f.

(δ is a parameter of the smoothing)

• Lap(b) represents a sample from the Laplacian distribution with pdf $\frac{1}{2b}e^{-|x|/b}$, mean 0 and variance $2b^2$.

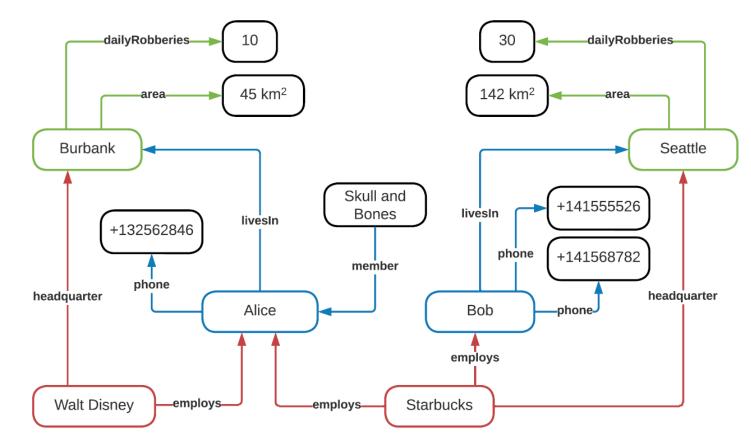


Finding a smooth upper-bound of LS_f

• For a query $f: G \rightarrow R$, we find a pointwise upper bound function of the local sensitivity of the query f at distance k, $U_f^{(k)}(g) \ge LS_f^{(k)}(g)$, for all $g \in G$, and then get $U_{f}(g) = max_{0 \leq k \leq size(g)} e^{-\beta k} U_{f}^{(k)}(g)$ Which is a smooth upper bound of the local sensitivity $LS_f(q)$ of f on q.

The most popular value that can be assigned to the variables in f is used to calculate $U_f^{(k)}(g)$

(?c employs ?x),(?c headquarter ?h),(?h dailyRoberies ?n)



Evaluation Results

