
Sidecar-based Path-aware Security
for Microservices

Catherine Meadows, Sena Hounsinou, Timothy Wood, Gedare Bloom

Microservice Architectures

Popular architecture for today’s web services
○ Decompose web applications into smaller

components that interact
○ Improves deployment, development,

and scalability

Challenges
○ Increased attack surfaces
○ Large number of components leads to

complex security policy enforcement

1
Figure. Microservice deployment graphs for Amazon and Netflix (from “Navigating
the Microservice DeathStar With DeployHub” by Tracy Rogan)

Microservice Sidecar Design Pattern

Sidecars are containerized, peripheral components that
intercept incoming and outgoing requests to services for
added communication and functionality

○ Service mesh architectures help connect microservices

Typical Technologies
● Web applications like Node.js and Python make up

microservice components
● Envoy Proxy and Istio service mesh provide sidecar routing

between microservices
2

Microservice Sidecar Design Pattern

Sidecars are containerized, peripheral components that
intercept incoming and outgoing requests to services for
added communication and functionality

○ Service mesh architectures help connect microservices

Typical Technologies
● Web applications like Node.js and Python make up

microservice components
● Envoy Proxy and Istio service mesh provide sidecar routing

between microservices
2

Sidecars can be an ideal vantage point to
provide security services without requiring

modifications to each microservice

Token-based Authentication

Clients use an authentication service to acquire an

access token based on their privilege level

○ Subsequent requests include this token that

can be inspected by services for

authorization

3

Current approaches authenticate users at start of
request but don't account for complex topology and

dynamic nature of microservices

Threats and Vulnerabilities

Client-based Attacks

○ Request smuggling

○ Token misconfiguration

Microservice-based Attacks

○ Malicious services

4

Microservices may be more vulnerable to attacks where
one component becomes compromised and can disrupt

the rest of the application since there is limited
authentication after passing through gateway

Our Goals

Provide path-aware security for microservices,

Perform authentication checks in sidecars using both client and path information,

Minimize modifications to existing application code

5

Benefits of Path Aware Security

Path-aware whitelists or blacklists to detect abnormal request flows that might

indicate a compromised service

6

Design

Leverage sidecars to reduce trusted computing base

● Ingress Proxy

○ Request misconfiguration check

○ Path inspection

● Egress Proxy

○ Blocks outgoing requests to unauthorized services

○ Appends signed sidecar token to request header path field (e.g.

<Path=A>Sidecar_A || <Path=B>Sidecar_B

7

We can use sidecars to both check the incoming
path and provide a trusted place to append path

information

Request Flow

8

Request has 2 tokens
signed by Auth and GW

Request Flow

9

Token is added with Path=A
when leaving Microservice A

Request Flow

10

Ingress sidecar at service C
can perform access control
based on entire preceding
path as well as user

Summary and Future Work

Microservices provide software development benefits but are more complex to manage and secure

Sidecar-based architecture is an ideal approach for seamlessly providing security services to large scale

microservice deployments

Embedding path information tokens in requests will allow sidecars to validate whether incoming and

outgoing requests meet security policies

Ongoing work explores how to implement security sidecars without requiring trust of the microservice

components

11

