The Hardness of Learning Access Control Policies

Xiaomeng Lei

<u>Mahesh Tripunitara</u>

speaker

University of Waterloo, Canada {xiaomeng.lei,tripunit}@uwaterloo.ca

- Policy = Access control policy [12, 13, 16, 17]
- Parameters:
 - Policy model
 - Examples
 - Goodness properties of learning algorithm

- We consider: Access matrix, RBAC, ReBAC
- A model specifies:
 - Policy syntax
 - Access request syntax + enforcement algorithm

Underlying policy model may = or \neq output policy model.

	alice	bob	ob carol sec	
alice	admin	admin		read, write
bob				read
carol			admin	read

- Data from access enforcement [12, 13, 16, 17].
- Specifically, example = $\langle access-request, \pi \rangle$
 - $\pi =$ some string generated during enforcement of *access-request*.
 - Special case: $\pi \in \{\text{allow}, \text{deny}\}.$
- Examples drawn under some distribution, \mathcal{D} .

Output policy suffers low error with high probability.

- Adopt a notion of error = Pr_D {difference between underlying & output policies}
- Then, for any δ, ϵ , where $\delta, \epsilon \in (0, 1/2)$, we seek: Pr {error $\leq \epsilon$ } $\geq 1 - \delta$.
- "Probably, approximately correct."
- Learning algorithm runs in time polynomial in: Size of underlying policy, $1/\epsilon$, $1/\delta$

Models (syntax) and examples matter!

$$\begin{array}{c} x_1 \wedge ((x_2 \wedge \neg x_1) \vee \\ \neg x_4 \vee x_3) \end{array} \xrightarrow{\langle \langle 1, 1, 1, 0 \rangle, 1 \rangle} \\ \hline \langle \langle 1, 0, 1, 0 \rangle, 1 \rangle \\ \langle \langle 0, 0, 1, 1 \rangle, 0 \rangle \end{array} \xrightarrow{\text{as CNF} = \text{easy}} \\ \text{as DNF} = \text{hard}$$

Learning Problem I

- Underlying, output model = access matrix with positive rights
- Example = $\langle \langle u_i, p_j \rangle, \{\text{allow,deny}\} \rangle$
- Error = $\mathsf{Pr}_{\langle\langle u, p \rangle, b \rangle \leftarrow \mathcal{D}} \{\mathsf{In output policy}, \langle u, p \rangle \mapsto \neg b \}$

This algorithm is efficient, and probably, approximately correct.

Proof.

- Only possible kind of error: output policy denies an access-request $\langle u, p \rangle$ that it should allow.
- Consider $\langle \langle u, p \rangle, 1 \rangle$ s.t. $\Pr_{\mathcal{D}} \{ \langle \langle u, p \rangle, 1 \rangle$ occurs $\} \geq \epsilon/n$, where n = size of underlying policy.
- # examples $\geq (n/\epsilon) (\ln (n) + \ln (1/\delta)) \implies \text{error} \leq \epsilon$

Learning Problem II

- Underlying, output policy = access matrix with positive and negative rights.
 - With "deny overrides" enforcement discipline.
- Example = $\langle \langle u, p \rangle, \{\text{allow,deny}\} \rangle$
- Error = Pr {difference in entries}

$$\langle u_1, p_2 \rangle \mapsto \text{allow} \qquad \langle u_3, p_2 \rangle \mapsto \text{deny}$$

 $\langle u_2, p_3 \rangle \mapsto \text{deny} \qquad \langle u_2, p_4 \rangle \mapsto \text{deny}$

To Prove Hardness

Decision problem

- Given $\langle G, k \rangle$, does G have a vertex cover of size k?
- If this problem $\in \mathbf{RP}$, then $\mathbf{RP} = \mathbf{NP}$.

Certificate-construction problem

- Given $\langle G, k \rangle$ such that G has a vertex cover of size k, output one.
- If this problem has a randomized polynomial-time algorithm, then $\mathbf{RP} = \mathbf{NP}$.

Encode $\langle G, k \rangle$ + certificate as an underlying access matrix.

E.g., for k = 3

	p_1	p_2	$ p_3 $	$ p_4 $	$ p_5 $	$ p_6 $
$\overline{u_1}$	X		\checkmark			\checkmark
$\overline{u_2}$				\checkmark		\checkmark
$\overline{u_3}$	\checkmark			\checkmark	\checkmark	\checkmark
$\overline{u_4}$		>	\checkmark	X	\checkmark	
u_5			\checkmark	\checkmark	X	

Learning Problem III — RBAC

- Underlying, output policy = RBAC
- Example =
 - Role-activation, $\langle \langle u_i, r_j \rangle$, {allow,deny} \rangle
 - Access-request, $\langle \langle u_a, p_b \rangle, \{allow, deny\} \rangle$
- Error = $\Pr \{ \text{Output policy} \not\equiv \text{underlying} \}$

 $\langle Bob, Bob\text{-record} \rangle \mapsto allow$ $\langle Daniel, Alice\text{-record} \rangle \mapsto deny$ $\begin{array}{l} \langle \operatorname{Bob},\operatorname{Alice-record}\rangle\mapsto\operatorname{allow}\\ \langle \operatorname{Daniel},\operatorname{Carol}\rangle\mapsto\operatorname{deny} \end{array}$

Learning Problem IV — ReBAC

- Underlying = ReBAC policy
- Output = DFA
 - Min. # states
 - Accepts $S \subseteq P$ that occur in G; rejects others
- Example = $\langle \langle u, v \rangle, \pi \rangle$
 - *u*, *v*: vertices in *G*
 - $\langle u, v \rangle \mapsto$ allow $\implies \pi \in P$
 - $\langle u, v \rangle \mapsto \operatorname{deny} \implies \pi = \phi$
- Error = $\Pr{\{\cdot\}}$ either:
 - DFA accepts/rejects string incorrectly, or:
 - DFA is not min. sized

- Start with DFA that rejects everything
- Ignore example in which $\pi = \phi$
- $\bullet\,$ Otherwise, modify DFA to accept $\pi\,$
- Run minimization algorithm [10]

Only error in DFA is it rejects string it should accept. DFA is not min. # sized \implies it rejects a string it should accept. After: $\langle \langle Daniel, Bob-record \rangle, \langle assists.treats.owns \rangle \rangle$ $\langle \langle Bob, Alice-record \rangle, \langle treats.owns \rangle \rangle$

Without minimization

With minimization

fin

Xiaomeng Lei Mahesh Tripunitara Hardness of Learning 17/17