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            Examples of Computation Principals

Smart Contracts
Trusted Execution Environments

Mobile code

eBPF programs



Existing Authorization Logics

Computations
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Coal: Authorization logic that 
distinguishes computation 

principals from other principals
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{P}

Homer trusts {P}

{P}

Homer trusts {P} if  {P} is  
verified to be secure  

(e.g., differentially private)



Challenge: How to Represent a Computation Principal

Can I use the Hash Digest  of the computation?
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Why Hash Representation is Opaque?

Recall that computations have 
✓Structure 
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✘Verified
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Why Hash Representation is Brittle?

   No equational reasoning 

• P ≈ P’ ⇏ Hash(P) = Hash(P’) 

• Equivalent programs are 
treated as different principals 

• Whenever the computation 
changes, trust policy changes

{P}

{P’}

Semantics-preserving  
compilation
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Overview

            e ::=  …  |  𝛍T.e     |     exec(e)  

                 𝛕 ::=  … | p says 𝛕  |  code{𝛍T.e}  

Computation Principal

Run a Computation 
Principal

Computation ExpressionML/DCC-like

Principal p supports 
proposition 𝛕 
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Specifying Trust in a Computation
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Assume  {P} = 𝛍T.e 



Homer trusts {P} that is analyzed to be differentially private by a 

                       verified (differential privacy) analyzer

{P}

✅

Specifying Chain of Trust



Computation Principal

Predicate Atomic Principal

Specifying Trust Chain in a Computation
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Specifying Trust Chain in a Computation

code{DPAnalyzer} says (isDP 𝛍T.e) →  

Predicate Atomic Principal
Coq says (✅  DPAnalyzer) 

↳ ∀X. code{𝛍T.e} says X  → Homer says X

Computation Principal
{P}

✅

Assume  {P} = 𝛍T.e 
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Specifying  Trust in Equivalent Computations
Assume  {P} = 𝛍T.e 



Type System, Briefly

Key features are to ensure that 
✓Computation principals are well-formed 
✓Proofs and computations are separate 

• Mixing proofs and computations is meaningless 
✓Decidable type inference 
✓Equivalent programs are treated as equivalent computation principals
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❖Towards a real language: A secure programming language based on Coal 

• Realize Coal abstractions (e.g., Intel SGX as a computation principal) 

• Information-flow control guarantees 

• E.g. strong integrity guarantees for computation principals (they do not err)
❖Explore various notions of program equivalence to get equivalent principals 

• Introduces functional dependent types 

• Type checking could be undecidable



Coal: Enables expressive 
authorization policies using 

computation principals



Backup



Case Study: eBPF Authorization



eBPF Authorization Policy using Coal

Kernel says (∀U.  Verifier says (terminates U ∧ safeSysCalls U ) ) → (U  ⇒ Kernel)

Computation 
Principal

U terminates and is 
safe

U speaks for Kernel
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