
Expressive Authorization Policies
using Computation Principals

 Anitha Gollamudi Stephen Chong

Homer can access nuclear_data

Homer can access nuclear_data Homer trusts Carl

Can Carl Access Nuclear_Data?

Homer can access nuclear_data Homer trusts Carl

Authorization Logic

Carl speaks for Homer ∀P, P speaks for Homer ⇒ P can access nuclear_data

Carl can access nuclear_data

Principled reasoning about authorization decisions

Authorization Logic

Carl speaks for Homer ∀P, P speaks for Homer ⇒ P can access nuclear_data

Carl can access nuclear_data

Principled reasoning about authorization decisions

Homer trusts/delegates
to Carl

Authorization Logic

Carl speaks for Homer ∀P, P speaks for Homer ⇒ P can access nuclear_data

Carl can access nuclear_data

Principled reasoning about authorization decisions

Homer trusts/delegates
to Carl

Access Control Policy

Authorization Logic

Carl speaks for Homer ∀P, P speaks for Homer ⇒ P can access nuclear_data

Carl can access nuclear_data

Principals play a central role

Authorization Logic

Carl speaks for Homer ∀P, P speaks for Homer ⇒ P can access nuclear_data

Carl can access nuclear_data

Principal Principal

Principal

Principals play a central role

What are Principals?

$ whoami

root

What are Principals?

• Entities that can express statements
about access control policies $ whoami

root

What are Principals?

• Entities that can express statements
about access control policies

• Examples
‣ Users
‣ Public keys
‣ OS processes
‣ Secure channels

$ whoami

root

What are Principals?

• Entities that can express statements
about access control policies

• Examples
‣ Users
‣ Public keys
‣ OS processes
‣ Secure channels

• Atomic Principals

$ whoami

root

Computations: Missing Piece

$ whoami

root

• Programs or Computations can
also express statements about
access control policies

• E.g. Program {P} says “Lenny can
access nuclear_data on Tuesday”

Computations

Computations: Missing Piece

$ whoami

root

• Programs or Computations can
also express statements about
access control policies

• E.g. Program {P} says “Lenny can
access nuclear_data on Tuesday”

Principals representing
computations are Computation

Principals

 Examples of Computation Principals

 Examples of Computation Principals

Smart Contracts
Trusted Execution Environments

Mobile code

eBPF programs

Existing Authorization Logics

Computations

$ whoami

root

No special treatment

But Computation Principals are Distinct

Computations

$ whoami

root

But Computation Principals are Distinct

Computations

$ whoami

root

SemanticsStructure

Verified Analyzed

Coal: Authorization logic that
distinguishes computation

principals from other principals

Express Trust Directly in a Computation

{P}

Homer trusts {P}

Express Trust Directly in a Computation

{P}

Homer trusts {P}

Express Trust Directly in a Computation

{P}

Homer trusts {P}

Express Trust Directly in a Computation

{P}

Homer trusts {P}

{P}

Homer trusts {P} if {P} is
verified to be secure

(e.g., differentially private)

Challenge: How to Represent a Computation Principal

Can I use the Hash Digest of the computation?

Why Hash Representation is Not Suitable

Opaque Brittle

Why Hash Representation is Opaque?

Recall that computations have
✓Structure
✓Semantics
✓Analyzed
✓Verified

{P}

Why Hash Representation is Opaque?

Recall that computations have
✓Structure
✓Semantics
✓Analyzed
✓Verified

{P}

Why Hash Representation is Opaque?

Recall that computations have
✓Structure
✓Semantics
✓Analyzed
✓Verified Trust Policy: Homer trusts Hash({P}) if {P} is secure

{P}

Why Hash Representation is Opaque?

Recall that computations have
✓Structure
✓Semantics
✓Analyzed
✓Verified Trust Policy: Homer trusts Hash({P}) if {P} is secure

{P}

⏟

Why Hash Representation is Opaque?

Recall that computations have
✓Structure
✓Semantics
✓Analyzed
✓Verified

Hash representation loses

✘Structure

✘Semantics

✘Analyzed

✘Verified

Why Hash Representation is Brittle?

No equational reasoning between computation principals

Recall that computations have
✓Structure
✓Semantics
✓Analyzed
✓Verified

Why Hash Representation is Brittle?

{P}

{P’}

Semantics-preserving
compilation

Why Hash Representation is Brittle?

 No equational reasoning

• P ≈ P’ ⇏ Hash(P) = Hash(P’)

• Equivalent programs are
treated as different principals

• Whenever the computation
changes, trust policy changes

{P}

{P’}

Semantics-preserving
compilation

Coal addresses both the challenges

Coal addresses both the challenges

Computation principals can be analyzed for intensional properties

Coal addresses both the challenges

Computation principals can be analyzed for intensional properties

Equivalent computations are treated as equivalent principals

Overview

 e ::= … | 𝛍T.e | exec(e)

 𝛕 ::= … | p says 𝛕 | code{𝛍T.e}

Overview

 e ::= … | 𝛍T.e | exec(e)

 𝛕 ::= … | p says 𝛕 | code{𝛍T.e}

ML/DCC-like

Overview

 e ::= … | 𝛍T.e | exec(e)

 𝛕 ::= … | p says 𝛕 | code{𝛍T.e}

ML/DCC-like

Principal p supports
proposition 𝛕

Overview

 e ::= … | 𝛍T.e | exec(e)

 𝛕 ::= … | p says 𝛕 | code{𝛍T.e}

Computation ExpressionML/DCC-like

Principal p supports
proposition 𝛕

Overview

 e ::= … | 𝛍T.e | exec(e)

 𝛕 ::= … | p says 𝛕 | code{𝛍T.e}

Computation Principal

Computation ExpressionML/DCC-like

Principal p supports
proposition 𝛕

Overview

 e ::= … | 𝛍T.e | exec(e)

 𝛕 ::= … | p says 𝛕 | code{𝛍T.e}

Computation Principal

Run a Computation
Principal

Computation ExpressionML/DCC-like

Principal p supports
proposition 𝛕

Homer trusts {P}

{P}

Assume {P} = 𝛍T.e

Specifying Trust in a Computation

∀X. code{𝛍T.e} says X → Homer says X

Computation Principal

Atomic Principal

{P}

Assume {P} = 𝛍T.e

Chain of Trust

Specifying Chain of Trust

Homer trusts {P} that is analyzed to be differentially private

{P}

Assume {P} = 𝛍T.e

Specifying Chain of Trust

Homer trusts {P} that is analyzed to be differentially private

{P}

Assume {P} = 𝛍T.e

Specifying Trust Chain in a Computation

∀X. code{𝛍T.e} says X → Homer says X

Computation Principal

Atomic Principal

{P}

Assume {P} = 𝛍T.e

Computation Principal

∀X. code{𝛍T.e} says X → Homer says XCode{DPAnalyzer} says (isDP 𝛍T.e) →

Atomic Principal

Specifying Trust Chain in a Computation

{P}

Assume {P} = 𝛍T.e

Computation Principal

∀X. code{𝛍T.e} says X → Homer says XCode{DPAnalyzer} says (isDP 𝛍T.e) →

Atomic Principal

Specifying Trust Chain in a Computation

{P}

Assume {P} = 𝛍T.e

Computation Principal

∀X. code{𝛍T.e} says X → Homer says XCode{DPAnalyzer} says (isDP 𝛍T.e) →

Predicate Atomic Principal

Specifying Trust Chain in a Computation

{P}

Assume {P} = 𝛍T.e

Homer trusts {P} that is analyzed to be differentially private by a

 verified (differential privacy) analyzer

{P}

✅

Specifying Chain of Trust

Computation Principal

Predicate Atomic Principal

Specifying Trust Chain in a Computation

{P}

✅

∀X. code{𝛍T.e} says X → Homer says Xcode{DPAnalyzer} says (isDP 𝛍T.e) →

Assume {P} = 𝛍T.e

Specifying Trust Chain in a Computation

code{DPAnalyzer} says (isDP 𝛍T.e) →

Predicate Atomic Principal
Coq says (✅ DPAnalyzer)

↳ ∀X. code{𝛍T.e} says X → Homer says X

Computation Principal
{P}

✅

Assume {P} = 𝛍T.e

{P}

Homer trusts {P} that is analyzed to be differentially private

Specifying Trust in Equivalent Computations
Assume {P} = 𝛍T.e

{P}

How to specify that Homer trusts compiled {P} ?

{P}

CompilerCompCert

Specifying Trust in Equivalent Computations
Assume {P} = 𝛍T.e

{P}

How to specify that Homer trusts compiled {P} ?

{P}

CompilerCompCert

Specifying Trust in Equivalent Computations
Assume {P} = 𝛍T.e

Type System, Briefly

Key features are to ensure that
✓Computation principals are well-formed
✓Proofs and computations are separate

• Mixing proofs and computations is meaningless
✓Decidable type inference
✓Equivalent programs are treated as equivalent computation principals

Equivalent Computations

Γ ⊦ e1 ≡ e2

Γ ⊦ code{e1} ≡ code{e2}

Equivalent Computations

Γ ⊦ e1 ≡ e2

Γ ⊦ code{e1} ≡ code{e2}

Equivalent Programs

Equivalent Computations

Γ ⊦ e1 ≡ e2

Γ ⊦ code{e1} ≡ code{e2}

Equivalent Programs

Equivalent computations are treated as equivalent principals

∀X. code{𝛍T.e} says X → Homer says Xcode{DPAnalyzer} says (isDP 𝛍T.e) →

Specifying Trust in Equivalent Computations

〖𝛍T.e〗= e'

∀X. code{𝛍T.e} says X → Homer says Xcode{DPAnalyzer} says (isDP 𝛍T.e) →

Specifying Trust in Equivalent Computations

〖𝛍T.e〗= e' Secure Compilation ⇒ 𝛍T.e ≡ e'

∀X. code{𝛍T.e} says X → Homer says Xcode{DPAnalyzer} says (isDP 𝛍T.e) →

Specifying Trust in Equivalent Computations

〖𝛍T.e〗= e' Secure Compilation

code{𝛍T.e} ≡ code{e'} Equivalent Principals

⇒ 𝛍T.e ≡ e'

∀X. code{𝛍T.e} says X → Homer says Xcode{DPAnalyzer} says (isDP 𝛍T.e) →

Specifying Trust in Equivalent Computations

〖𝛍T.e〗= e' Secure Compilation

code{𝛍T.e} ≡ code{e'} Equivalent Principals

≡

⇒ 𝛍T.e ≡ e'

∀X. code{𝛍T.e} says X → Homer says Xcode{DPAnalyzer} says (isDP 𝛍T.e) →

∀X. code{e'} says X → Homer says Xcode{DPAnalyzer} says (isDP 𝛍T.e) →

Specifying Trust in Equivalent Computations

〖𝛍T.e〗= e' Secure Compilation

code{𝛍T.e} ≡ code{e'} Equivalent Principals

≡

⇒ 𝛍T.e ≡ e'

∀X. code{𝛍T.e} says X → Homer says Xcode{DPAnalyzer} says (isDP 𝛍T.e) →

∀X. code{e'} says X → Homer says Xcode{DPAnalyzer} says (isDP 𝛍T.e) →

Specifying Trust in Equivalent Computations

Source Target

Coal: Next Steps

Coal: Next Steps

❖Towards a real language: A secure programming language based on Coal

• Realize Coal abstractions (e.g., Intel SGX as a computation principal)

• Information-flow control guarantees

• E.g. strong integrity guarantees for computation principals (they do not err)

Coal: Next Steps

❖Towards a real language: A secure programming language based on Coal

• Realize Coal abstractions (e.g., Intel SGX as a computation principal)

• Information-flow control guarantees

• E.g. strong integrity guarantees for computation principals (they do not err)
❖Explore various notions of program equivalence to get equivalent principals

• Introduces functional dependent types

• Type checking could be undecidable

Coal: Enables expressive
authorization policies using

computation principals

Backup

Case Study: eBPF Authorization

eBPF Authorization Policy using Coal

Kernel says (∀U. Verifier says (terminates U ∧ safeSysCalls U)) → (U ⇒ Kernel)

Computation
Principal

U terminates and is
safe

U speaks for Kernel

Specifying Trust Chain in Equivalent Computations

code{DPAnalyzer} says (isDP 𝛍T.e)→

Coq says (✅ DPAnalyzer)

↳ ∀X. code{𝛍T.e} says X→ Homer says X

Specifying Trust Chain in Equivalent Computations

code{DPAnalyzer} says (isDP 𝛍T.e)→

Coq says (✅ DPAnalyzer)

↳ ∀X. code{𝛍T.e} says X→ Homer says X

code{DPAnalyzer}≡code{〖DPAnalyzer〗} Equivalent Principals

code{〖DPAnalyzer〗} says (isDP 𝛍T.e)→

Coq says (✅ DPAnalyzer)

↳ ∀X. code{𝛍T.e} says X→Homer says X

Specifying Trust Chain in Equivalent Computations

code{DPAnalyzer} says (isDP 𝛍T.e)→

Coq says (✅ DPAnalyzer)

↳ ∀X. code{𝛍T.e} says X→ Homer says X⇒

code{DPAnalyzer}≡code{〖DPAnalyzer〗} Equivalent Principals

