
Hamed Rasifard, Rahul Gopinath, Michael Backes, Hamed Nemati |
28th ACM Symposium on Access Control Models and Technologies |
June 7-9

 hamed.rasifard@cispa.de

SEAL: Capability-Based
Access Control for Data-
Analytic Scenarios

mailto:hamed.rasifard@cispa.de

2

Trust Issues in Big-Data Sharing: Data Owners vs. Data Analysts

2

• Big-data era

Trust Issues in Big-Data Sharing: Data Owners vs. Data Analysts

High VelocityHigh Volume High Variety

2

• Big-data era

• Data owners collaborate with data analysts to extract data-driven insights

Trust Issues in Big-Data Sharing: Data Owners vs. Data Analysts

High VelocityHigh Volume High Variety

2

• Big-data era

• Data owners collaborate with data analysts to extract data-driven insights

• Data-sharing concerns

− Data owners: data privacy and security

− Data analysts: data quality and reliability

Trust Issues in Big-Data Sharing: Data Owners vs. Data Analysts

High VelocityHigh Volume High Variety

3

Data Sharing: Privacy Challenges

3

Data Sharing: Privacy Challenges

PrivacyData utility

3

Data Sharing: Privacy Challenges

PrivacyData utility Scalability Performance

3

Data Sharing: Privacy Challenges

PrivacyData utility Scalability Performance

Regulatory compliance

3

Data Sharing: Privacy Challenges

Lack of data-owner control
over data usage

PrivacyData utility Scalability Performance

Regulatory compliance

3

Data Sharing: Privacy Challenges

Lack of data-owner control
over data usage

PrivacyData utility Scalability Performance

Regulatory compliance Emerging Threats and Attacks

4

Data Sharing: Access-Control Challenges

4

Data Sharing: Access-Control Challenges

Fine-grained access control

4

Data Sharing: Access-Control Challenges

Fine-grained access control Dynamic data access

4

Data Sharing: Access-Control Challenges

Fine-grained access control Dynamic data access

Data context and granularity

4

Data Sharing: Access-Control Challenges

Fine-grained access control Dynamic data access

Data context and granularity
Integrating access-control systems
with privacy-preserving techniques

5

Our Solution: Bringing Computation to Data

5

Our Solution: Bringing Computation to Data

Data security

5

Our Solution: Bringing Computation to Data

Data security Data privacy

5

Our Solution: Bringing Computation to Data

Data security Data privacy Scalability and Efficiency

5

Our Solution: Bringing Computation to Data

Data security Data privacy

Required network bandwidth

Scalability and Efficiency

5

Our Solution: Bringing Computation to Data

Data security Data privacy

Required network bandwidth

Scalability and Efficiency

Compliance with data governance and regulations

5

• Challenges:

− Supporting fine-grained and dynamic access control

− Supporting complex orders of computations

− Maintaining data-owner control through all steps of computations

Our Solution: Bringing Computation to Data

Data security Data privacy

Required network bandwidth

Scalability and Efficiency

Compliance with data governance and regulations

5

• Challenges:

− Supporting fine-grained and dynamic access control

− Supporting complex orders of computations

− Maintaining data-owner control through all steps of computations

Our Solution: Bringing Computation to Data

Data security Data privacy

Required network bandwidth

Scalability and Efficiency

Compliance with data governance and regulations

SEAL: Capability-based Access-control Framework

6

Capability-based Access Control

6

• Provides fined-grained access control

• Support the least-privilege principle

• A capability is an unforgeable token

• Access rights is granted based-on possessing of capabilities

Capability-based Access Control

6

• Provides fined-grained access control

• Support the least-privilege principle

• A capability is an unforgeable token

• Access rights is granted based-on possessing of capabilities

Capability-based Access Control

* Miller et al., “Capability myths demolished”, Technical Report SRL2003-02, Johns Hopkins University Systems Research Laboratory.

• Capability-Object Model*

− Combines capabilities and objects to
enforce access control

− Objects represent system resources or
entities that are protected by the
capability-object model

6

• Provides fined-grained access control

• Support the least-privilege principle

• A capability is an unforgeable token

• Access rights is granted based-on possessing of capabilities

Capability-based Access Control

* Miller et al., “Capability myths demolished”, Technical Report SRL2003-02, Johns Hopkins University Systems Research Laboratory.

• Capability-Object Model*

− Combines capabilities and objects to
enforce access control

− Objects represent system resources or
entities that are protected by the
capability-object model

A CB

6

• Provides fined-grained access control

• Support the least-privilege principle

• A capability is an unforgeable token

• Access rights is granted based-on possessing of capabilities

Capability-based Access Control

* Miller et al., “Capability myths demolished”, Technical Report SRL2003-02, Johns Hopkins University Systems Research Laboratory.

• Capability-Object Model*

− Combines capabilities and objects to
enforce access control

− Objects represent system resources or
entities that are protected by the
capability-object model

A CB

F R

6

• Provides fined-grained access control

• Support the least-privilege principle

• A capability is an unforgeable token

• Access rights is granted based-on possessing of capabilities

Capability-based Access Control

* Miller et al., “Capability myths demolished”, Technical Report SRL2003-02, Johns Hopkins University Systems Research Laboratory.

• Capability-Object Model*

− Combines capabilities and objects to
enforce access control

− Objects represent system resources or
entities that are protected by the
capability-object model

A CB

F R

F: Forwarding Facet
R: Revoking Facet

7

SEAL: Capability Model

7

• Capability types

− User capability Forwarding facet

− System capability Revoking facet

SEAL: Capability Model

User
Capabil

ity

Syste
m

Capabil
ity

7

• Capability types

− User capability Forwarding facet

− System capability Revoking facet

SEAL: Capability Model

• System-Capability Tree

User
Capabil

ity

Syste
m

Capabil
ity

Roo
t

SC SC SC

7

• Capability types

− User capability Forwarding facet

− System capability Revoking facet

SEAL: Capability Model

• System-Capability Tree

− Tracking delegations

User
Capabil

ity

Syste
m

Capabil
ity

Roo
t

SC SC SC

SC SC

Re-delegation

7

• Capability types

− User capability Forwarding facet

− System capability Revoking facet

SEAL: Capability Model

• System-Capability Tree

− Tracking delegations

− Fast revocation

User
Capabil

ity

Syste
m

Capabil
ity

Roo
t

SC SC SC

SC SC

Re-delegation

7

• Capability types

− User capability Forwarding facet

− System capability Revoking facet

SEAL: Capability Model

• System-Capability Tree

− Tracking delegations

− Fast revocation

User
Capabil

ity

Syste
m

Capabil
ity

Roo
t

SC SC

8

SEAL: Stateful System Model

8

• A finite state machine represent possible orders of
computations

• SEAL extends Rei policy language

• A data owners defined the state machine as a policy set

SEAL: Stateful System Model

SEAL

8

• A finite state machine represent possible orders of
computations

• SEAL extends Rei policy language

• A data owners defined the state machine as a policy set

SEAL: Stateful System Model

Policy

Data owner

SEAL

8

• A finite state machine represent possible orders of
computations

• SEAL extends Rei policy language

• A data owners defined the state machine as a policy set

SEAL: Stateful System Model

Policy

Data owner

No Sensitive Data

SEAL

8

• A finite state machine represent possible orders of
computations

• SEAL extends Rei policy language

• A data owners defined the state machine as a policy set

SEAL: Stateful System Model

Policy

Data owner

Not Allowed

9

SEAL: Security Labels Tracking

9

• SEAL tracks security labels

− Computation level (transition tracing)

− Data level (taint tracking: High vs. Low)

SEAL: Security Labels Tracking

9

• SEAL tracks security labels

− Computation level (transition tracing)

− Data level (taint tracking: High vs. Low)

• For example:

− Current state = S3

SEAL: Security Labels Tracking

9

• SEAL tracks security labels

− Computation level (transition tracing)

− Data level (taint tracking: High vs. Low)

• For example:

− Current state = S3

− Computation trace = {s, a, b}

SEAL: Security Labels Tracking

9

• SEAL tracks security labels

− Computation level (transition tracing)

− Data level (taint tracking: High vs. Low)

• For example:

− Current state = S3

− Computation trace = {s, a, b}
− Current data taint = {High}

SEAL: Security Labels Tracking

10

SEAL: Permissions

10

• A capability contains a set of Permissions

• Permission = transition +
 data_predicate(security labels) +
 computation_predicate(security labels)

SEAL: Permissions

10

• A capability contains a set of Permissions

• Permission = transition +
 data_predicate(security labels) +
 computation_predicate(security labels)

• For example:

SEAL: Permissions

P1:{s, High ∨ Low}
P2:{a, LOW}
P3:{a, High ∨ Low}

10

• A capability contains a set of Permissions

• Permission = transition +
 data_predicate(security labels) +
 computation_predicate(security labels)

• For example:

SEAL: Permissions

C ∋ P2 ∈ C ∧ P3 ∉ C

P1:{s, High ∨ Low}
P2:{a, LOW}
P3:{a, High ∨ Low}

Analyst

LOW

10

• A capability contains a set of Permissions

• Permission = transition +
 data_predicate(security labels) +
 computation_predicate(security labels)

• For example:

SEAL: Permissions

P1:{s, High ∨ Low}
P2:{a, LOW}
P3:{a, High ∨ Low}

Analyst

High ∨ LOW

C ∋ P3 ∈ C

11

Case Study: Statistical Analysis

11

• Selecting a subset of data records and count them

• The Publish_Result action adds noise to the result

Case Study: Statistical Analysis

12

• SEAL can track the taint of every bit during a computation

• Data owners can leverage the provided taint-tracking mechanism

Case Study: Model Training with Taint Tracking

13

• A proof-of-concept implementation

• Secure program execution: Capsicum framework

• Taint-tracking:

− Data flow: Python object proxies for direct taint propagation

− Control flow: Statically instruments the source code to keep track of
indirect taint propagation due to control flow

− Libraries

− Transfer libraries to LLVM-Intermediate representation (IR) using
Numba

− Static taint tracking using PhASAR

SEAL: Implementation

14

• We evaluated scenarios on three real-world datasets *

− Adult dataset (32, 561 entries)

− Incident-Report dataset (141, 713 entries)

− Household-Power-Consumption dataset (2, 075, 258 entries)

SEAL: Evaluation

* from UCI Machine-Learning Repository

14

• We evaluated scenarios on three real-world datasets *

− Adult dataset (32, 561 entries)

− Incident-Report dataset (141, 713 entries)

− Household-Power-Consumption dataset (2, 075, 258 entries)

SEAL: Evaluation

* from UCI Machine-Learning Repository

Framework Overhead Capsicum Overhead

15

Key Takeaways

15

• SEAL resolves the trust issue between data owners and analytics

Key Takeaways

15

• SEAL resolves the trust issue between data owners and analytics

• SEAL is a fine-grained access-control framework for data-analytics scenarios

− Capability-object model

− Stateful system model

− Security label tracking

Key Takeaways

15

• SEAL resolves the trust issue between data owners and analytics

• SEAL is a fine-grained access-control framework for data-analytics scenarios

− Capability-object model

− Stateful system model

− Security label tracking

• SEAL can be employed in the real-world scenarios with a reasonable
overhead

Key Takeaways

16

Rather short but strong title

Back-up Slides

17

SEAL: Threat Model

17

• System Security

− trusted: the framework’s hosting machine + Capsicum

SEAL: Threat Model

17

• System Security

− trusted: the framework’s hosting machine + Capsicum

− assumed: analysts act as adversaries + secured connections + network-
based attacks are prevented

SEAL: Threat Model

17

• System Security

− trusted: the framework’s hosting machine + Capsicum

− assumed: analysts act as adversaries + secured connections + network-
based attacks are prevented

• Data Privacy regarding machine learning (Following Nasr et al.*)

SEAL: Threat Model

17

• System Security

− trusted: the framework’s hosting machine + Capsicum

− assumed: analysts act as adversaries + secured connections + network-
based attacks are prevented

• Data Privacy regarding machine learning (Following Nasr et al.*)

− weak adversaries: can train models and evaluate their data with trained
models

SEAL: Threat Model

17

• System Security

− trusted: the framework’s hosting machine + Capsicum

− assumed: analysts act as adversaries + secured connections + network-
based attacks are prevented

• Data Privacy regarding machine learning (Following Nasr et al.*)

− weak adversaries: can train models and evaluate their data with trained
models

− medium adversaries: weak adversaries + can request models

SEAL: Threat Model

17

• System Security

− trusted: the framework’s hosting machine + Capsicum

− assumed: analysts act as adversaries + secured connections + network-
based attacks are prevented

• Data Privacy regarding machine learning (Following Nasr et al.*)

− weak adversaries: can train models and evaluate their data with trained
models

− medium adversaries: weak adversaries + can request models

− strong adversaries: medium adversaries + can apply their datasets during
training models

SEAL: Threat Model

* Nasr et al., “Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning”. In 2021 IEEE Symposium on Security and Privacy (SP)

18

Seal: Approach

18

• Security labels tracking

− data level

− computation level

Seal: Approach

• Based on capability-object model

− tracking capabilities

− revoking capability hierarchies

• Stateful system model

− defining possible orders

of computations

19

SEAL

19

• Operates in two phases

− initialisation phase (steps A - D)

− execution phase (steps 1 - 13)

SEAL

20

SEAL: Components

20

• Access Controller

− orchestrates operations

• Capability Manager

SEAL: Components

20

• Access Controller

− orchestrates operations

• Capability Manager

− handles delegating/revoking

capabilities

− verifies capabilities

SEAL: Components

20

• Access Controller

− orchestrates operations

• Capability Manager

− handles delegating/revoking

capabilities

− verifies capabilities

SEAL: Components

• Policy Manager

− checks requests and keeps their trace

• File Manager

20

• Access Controller

− orchestrates operations

• Capability Manager

− handles delegating/revoking

capabilities

− verifies capabilities

SEAL: Components

• Policy Manager

− checks requests and keeps their trace

• File Manager

− creates file handlers (using Capsicum)

• Execution Manager

20

• Access Controller

− orchestrates operations

• Capability Manager

− handles delegating/revoking

capabilities

− verifies capabilities

SEAL: Components

• Policy Manager

− checks requests and keeps their trace

• File Manager

− creates file handlers (using Capsicum)

• Execution Manager

− execute computations (inside

Capsicum sandboxes)

SEAL: Security Policies

SEAL: Security Policies

• A system’s state transforms based on policies

• Extended Rei policy language

SEAL: Security Policies

• A system’s state transforms based on policies

• Extended Rei policy language

− Rei consists of constructs: rights,
prohibitions, obligations

SEAL: Security Policies

• A system’s state transforms based on policies

• Extended Rei policy language

− Rei consists of constructs: rights,
prohibitions, obligations

• Added Two policy constructs

SEAL: Security Policies

• A system’s state transforms based on policies

• Extended Rei policy language

− Rei consists of constructs: rights,
prohibitions, obligations

• Added Two policy constructs

− StateObject: defines a system’s state

SEAL: Security Policies

• A system’s state transforms based on policies

• Extended Rei policy language

− Rei consists of constructs: rights,
prohibitions, obligations

• Added Two policy constructs

− StateObject: defines a system’s state

− ACTION: defines a possible computation

SEAL: Security Policies

• A system’s state transforms based on policies

• Extended Rei policy language

− Rei consists of constructs: rights,
prohibitions, obligations

• Added Two policy constructs

− StateObject: defines a system’s state

− ACTION: defines a possible computation

• Rights define state transitions

SEAL: Security Policies

• A system’s state transforms based on policies

• Extended Rei policy language

− Rei consists of constructs: rights,
prohibitions, obligations

• Added Two policy constructs

− StateObject: defines a system’s state

− ACTION: defines a possible computation

• Rights define state transitions

• A capability includes rights

22

Security Policies - An Example

22

Security Policies - An Example

22

Security Policies - An Example

23

Case Study

24

Case Study: First Scenario

24

• Statistical Analysis

• Selecting a subset of data records and count them

Case Study: First Scenario

24

• Statistical Analysis

• Selecting a subset of data records and count them

• The Publish_Result action adds noise to the result

Case Study: First Scenario

25

Case Study: Second Scenario

25

• Differentially Private Machine Learning

• Reduce an analyst’ budget based on the types of adversaries

Case Study: Second Scenario

25

• Differentially Private Machine Learning

• Reduce an analyst’ budget based on the types of adversaries

 weak adversaries

Case Study: Second Scenario

25

• Differentially Private Machine Learning

• Reduce an analyst’ budget based on the types of adversaries

 weak adversaries

 medium adversaries

Case Study: Second Scenario

25

• Differentially Private Machine Learning

• Reduce an analyst’ budget based on the types of adversaries

 weak adversaries

 medium adversaries

 strong adversaries

Case Study: Second Scenario

26

• Processing data with analysts’ programs

• The Publish_Result action adds noise to the result

Case Study: Third Scenario

27

• SEAL can track the taint of every bit during a computation

• Data owners can leverage the provided taint-tracking mechanism

• SEAL Can evaluate Rights based on the data taints

Fourth Scenario: Model Training with Taint Tracking

28

• We evaluated on three real-world datasets *

− Adult dataset (32, 561 entries)

− Incident-Report dataset (141, 713 entries)

− Household-Power-Consumption dataset (2, 075, 258 entries)

SEAL: Evaluation

* from UCI Machine-Learning Repository

