
The Category-Based Approach to
Access Control, Obligations and Privacy

Maribel Fernández
King’s College London

SACMAT 2023

Joint work with
Sandra Alves Clara Bertolissi Jenjira Jaimunk Bhavani Thuraisingham



Motivations

A variety of access control models...

...each with specific languages, techniques, properties.

• RBAC: Role-Based Access Control

• Mandatory (e.g., [Bell-Lapadula] military applications)

• Event-Based (e.g., DEBAC in banking applications)

• ABAC: Attribute-Based Access Control

• . . .

⇒ An Access Control MetaModel [Barker09] based on the
primitive notion of a category.



Category-Based MetaModel

• Core set of principles of access control, can be specialised for
specific applications

• Abstracts away complexities of specific access control models

• Formally defined: axiomatic approach

• to compare policies rigorously
• understand the consequences of changes
• prove properties of policies and combinations of policies



In this talk:

• The category based metamodel
• Category-based

• Access Control: CBAC

• Obligations: CBAC-O

• Privacy: CBDA

• Conclusions and future work



The Category-Based Metamodel:
entities, relationships, axioms



Entities

• countable set C of categories: c0, c1, . . .

• countable set P of principals: p1, p2, . . .

• countable set A of actions: a1, a2, . . .

• countable set R of resources: r1, r2, . . .

• countable set S of situational identifiers (locations, times)

Category: class, group, or domain, to which entities belong

Particular cases:
role, security clearance, attribute-based...



Relationships between entities
• Principal-category assignment PCA:

(p, c) ∈ PCA iff p ∈ P is assigned to c ∈ C
• Resource-category assignment RCA:

(r , c) ∈ RCA iff r ∈ R is assigned to c ∈ C
• Permission-category assignment ARCA:

(a, cr , cp) ∈ ARCA iff action a ∈ A on resource category cr
may be performed by principals in the category cp
• Authorisations PAR:

(p, a, r) ∈ PAR iff p ∈ P may perform action a ∈ A on
resource r ∈ R

Principals Cat_P Cat_R Resourcesactions

Privileges

PCA ARCA RCA



Axioms

Core axiom:

(a1) ∀p ∈ P, ∀a ∈ A, ∀r ∈ R,

((∃cp, c
′
p, cr , c

′
r ∈ C,

(p, cp) ∈ PCA ∧ cp ⊆ c ′p ∧ (r , cr ) ∈ RCA ∧ cr ⊆ c ′r∧
(a, c ′r , c

′
p) ∈ ARCA)

⇔ (p, a, r) ∈ PAR)

⊆ is a relationship between categories (equality, set inclusion, . . . )

Additional relationships and axioms could be added



CBAC

Image designed by Freepik



Category-Based Access Control

A basic category based policy is a tuple 〈E ,PCA,ARCA,PAR〉,
where E = (P, C,A,R,S), and axiom (a1) is satisfied.

Expressiveness:
A range of existing access control models can be represented as
specialised instances of CBAC [Bertolissi and F 2010]:

DAC, MAC

RBAC

Hybrid models: 
AERBAC, ARBHAC,…

ABAC

RBAC extensions
GeoRBAC, OrBAC,…

Idea: Following [Barker’09], identify the core concepts 
common to the different models.

Unifying formal model CBAC
general notion of category seen as grouping of entities



Category-Based Access Control

Operational semantics: (a1) is realised through a set of function
definitions (rewrite rules) [Bertolissi and F, 2014]

Why rewriting:

• Expressive, multi-paradigm specification language

• Well-developed theory

• Languages and Tools for rapid prototyping/policy analysis:
Maude, Tom, CiME



Operational Semantics

Rewrite-based specification of the axiom (a1):

(a2) par(P,A,R) → if
inARCA∗(A, contain(rca(R)), contain(pca(P)))
then grant else deny

grant and deny are answers
pca, rca compute the list of categories of a principal/resource
contain computes the set of categories that contain any of the
categories in its input
∈ is a membership operator
arca returns the list of all the permissions assigned to the
categories in a set



Evaluation

An access request by a principal p to perform the action a on the
resource r is evaluated by rewriting par(p, a, r) to normal form.

Proposition:
par(p, a, r)→∗ grant if and only if (p, a, r) ∈ PAR



Example policy

Employees in a company are classified as managers, senior
managers or senior executives.

To be categorised as a senior executive (SeniorExec), a principal
must be a senior manager (SeniorMng) according to the
information in site ν1 and must be a member of the executive
board.

Any senior executive is permitted to read the salary of an
employee, provided the employee works in a profitable branch and
is categorised as a Manager (Manager).

All managers’ names are recorded locally, and the list of profitable
branches is kept up to date at site ν2 .



Example policy

Specific rules (to add to the generic rules computing par):

pca(P) → if SeniorMng ∈ pcaυ1(P)
then (if P ∈ ExecBoard then [SeniorExec]

else [SeniorMng])
else [Manager]

arca(SeniorExec) → zip-read(managers(profbranchυ2)

where
zip-read, given a list L = [l1, . . . , ln], returns a list of pairs
[(read, l1), . . . , (read, ln)]
profbranch, defined at site υ2, returns the list of profitable branches
manager returns the name of the manager of a branch B given as
a parameter (managers does the same for a list of branches).



Properties of policies

Totality: Each request from a valid principal p to perform a valid
action a on a resource r receives an answer.

Consistency: For any p ∈ P, a ∈ A, r ∈ R, at most one result is
possible for a request par(p, a, r).

Soundness and Completeness: For any p ∈ P, a ∈ A, r ∈ R, an
access request by p to perform the action a on r is granted if and
only if p belongs to a category that has the permission (a, r).

Remark:
Totality + consistency ≡ confluence, termination, sufficient completeness

Sufficient conditions: orthogonality [Klop], rpo [Dershowitz], . . .

Application: example policy is consistent, total, sound, complete



Policy Specification: Graph-Based Language
A policy graph is a tuple G = (V,E , lv , le):

• V is a set of nodes;

• E ⊆ {{v1, v2} | v1, v2 ∈ V ∧ v1 6= v2};
• lv is an injective labelling function lv : V → C ∪ P ∪ A ∪R;

• le is a labelling function for edges.



Well-typed graph

A well-typed graph contains only the following kinds of edges:

(a) {v1, v2} ∈ E s. t. type(v1) = P ∧ type(v2) = CP ,
connects principals to categories — edge of type PCP

(b) {v1, v2} ∈ E s. t. type(v1) = C ∧ type(v2) = C ,
connects categories — edge of type CC

(c) {v1, v2} ∈ E s. t. type(v1) = C ∧ type(v2) = A,
connects categories to actions — edge of type CA

(d) {v1, v2} ∈ E s. t. type(v1) = C ∧ type(v2) = R,
connects categories to resources — edge of type CRR



Relations associated with the graph

G is a well-typed policy graph
Then:

• PCAG = {(lv(v1), lv(v2)) | type({v1, v2}) = PCp}

• RCAG = {(lv(v1), lv(v2)) | type({v1, v2}) = RCR}

• ARCAG = {(lv(v1), lv(v2), lv(v3)) | type({v1, v2}) =
ACR , type({v3, v1}) = CPA}

• PARG obtained via path computation (from P to R)

Administrative model: Admin-CBAC in the CBAC metamodel



Implementation

Figure: Interface of the prototype: landing page



Implementation

Figure: Test policy



Implementation

Figure: Interface of the prototype: analysis menu



Key findings

Expressive power:

• entities, relations: generic approach

• Axiomatisation: takes into account multi-site systems,
combination of policies, administration

• Rewrite-based operational semantics: supports formal
reasoning/policy analysis

• Graph-based policy representation: facilitates
implementation/policy visualisation



Obligations

Image designed by Freepik



Obligations and Access Control

• Licence agreements

• EU GDPR - Data collection

• US Gramm-Leach-Bliley Act for financial institutions

• Medical policies: access to treatment/consent form



Features of Obligations

• Mandatory action

• Within an interval, defined by temporal constraints or events

• Atomic or compound actions

• May depend on conditions

• Interactions between obligations and permissions: fulfilling the
obligations may depend on certain permissions.

• Accountability, if obligations go unfulfilled.



Events - Types, History, Interval

Event: an action that happened at a specific moment in time.

Event Type/Instance = Generic Event/Event

Examples:

alarmON = {act = fire alarmON,ward = neurology ,
happens = 20220621 .120000},

callFireDep = {act = call FireDEP,ward = neurology ,
happens = 20220621 .120500},

Generic events include variables:

alarmON[W ,T ] = {act = fire alarmON,ward = W , happens = T}

Event history: ordered sequence h of events that happen in a run
of the system



Obligations

A generic obligation is a tuple (a, r , ge1, ge2, s)
a action, r object, ge1, ge2 generic events (interval where the
obligation must be fulfilled), s = (op, sec) secondary obligations.

Example:
(alert, firedept, alarmON[W ,T ], alarmOFF [W ,T ′], (∧, [ocall , onotify ])),

onotify = (notify , headTeam, alarmON[T ,W ],T + 3, id)
ocall = (call , firedept, alarmON[T ,W ], alarmOFF [W ,T ′], id)

Generic vs Concrete obligation



Duties

A duty is a tuple (p, o) of a principal and a concrete obligation.

Duty status:

• invalid;

• fulfilled;

• violated;

• pending;



Obligations in the CBAC Metamodel

More entities:

• Countable sets Ev and GEv of specific events and generic
events, respectively: e, e1, . . .; ge, ge1, . . .

• Countable set H of event histories, h, h1, . . ..

• Countable sets O of obligations, o, o1, . . ., and S of
subordinate pairs, s, s1, . . ..
The elements of S are either id or pairs of the form (op, sec)
where op is an operator and sec is a list of obligations



More relations

Obligation-category assignment:
OCA ⊆ O × C: (o, c) ∈ OCA iff o is assigned to principals in c .

Obligation-principal assignment:
OPA ⊆ O × P: (o, p) ∈ OPA iff p ∈ P has the obligation o.

Duty assignment:
DA ⊆ O∅ × P = D, such that (o, p) ∈ DA iff the principal p ∈ P
must fulfil the concrete obligation o = (a, r , e1, e2, s).

Examples: o[P,D] = (visa, passport(P),⊥, registration(P,D), id)
OCA: (o[P,D], international-student)
PCA: (JohnSmith, international-student)
OPA: (o[JohnSmith,D], JohnSmith)
DA: (o[JohnSmith, 20.09.2022], JohnSmith)



Obligation axioms

(o1) ∀o ∈ O, ∀p ∈ P
((
∃c , c ′ ∈ C,

(p, c) ∈ PCA ∧ c ⊆o c ′ ∧ (o, c ′) ∈ OCA
)
⇔ (o, p) ∈ OPA

)
(o2) ∀p ∈ P, ∀a ∈ A,∀ ∈ R, ∀ge1, ge2 ∈ GE ,∀e1, e2 ∈ E , ∀s, sc ∈ S,((

∃((a, r , ge1, ge2, s), p) ∈ OPA,
(e1, ge1), (e2, ge2) ∈ EI, (sc , s) ∈ SI

)
⇔ ((a, r , e1, e2, sc), p) ∈ DA

)
The relations FULFILLED, PENDING and VIOLAT ED are
also axiomatised.



Analysis of policies

- models of access control and obligation
- authorisations and obligations co-exist: interdependencies
- dynamic categories: e.g. depending on events in h

Checking interactions: every user has the required permissions in
order to fulfill the duties

Strong and Weak Compatibility: Sufficient conditions to ensure
that only duties that are consistent with authorisations are issued.



Privacy

Image designed by Freepik



Web Services, Mobile Apps, Internet of Things . . .

large quantities of data are transmitted to external services

Benefits:
+++ collected data can be used to provide better services to users

Risks:
--- security and privacy

Goal: Users control which/when data is collected and shared
Supported by regulations: GDPR in EU, FTC in US, etc.
Techniques??
encryption/differential privacy. . . useful but not sufficient



Controlling Data-Collection and Data-Sharing

Two key notions:
- control the way data is collected/transmitted
- control access to data

Requirements:
a cloud-IoT architecture with
integrated data-collection, storage and data management model +
policy languages, enforcement mechanisms, reasoning techniques

Challenges:
variety of IoT devices and services, variety of users, policy
specification and enforcement



DataBank: A Privacy-Preserving Cloud-IoT Architecture

Main features:

• data repositories: cloud + local Data Pocket
• data collection control before uploading to the cloud
• access control to restrict access to data by third parties
• Implemented by Privasee



DataBank



Category-Based Data Access Model (CBDA)

Entities:

• D: data sources

• DI: data items e.g. location, time, speed

• S: external services that process data
• C: categories partitioned into

• CDU : unprocessed data
• CDS : stored data for sharing
• CS : services

• A: actions, partitioned into
• AD: data collection actions e.g., upload, average, encrypt
• AS : service actions on stored data, e.g., view, transfer

Categories can be dynamic: defined via attributes



CBDA Model

Relationships:

• Device-Data Assignment: DUA ⊆ D ×DU
• Data Item-Category Assignment: DICA ⊆ DI × C,

partitioned into DICAU and DICAS

• Action-Category Assignment: ACA ⊆ A× C × C, partitioned
ACAD (data collection actions) and ACAS (service actions):

• Service-Category Assignment: SCA ⊆ S × C
• Authorised Data Collection: AD ⊆ A×DU ×DS

(da, ud , sd) ∈ AD iff the data collection action da ∈ AD is
authorised on ud ∈ DU to produce sd ∈ DS .

• Authorised Data Access: ADS ⊆ A×DS × S, such that
(sa, sd , s) ∈ ADS iff service action sa ∈ AS is authorised on
the stored data item sd ∈ DS for the service s ∈ S.



CBDA Model

Axioms for authorisations (simplified: no category hierarchies)

Data Collection: unprocessed data→ stored data
(da1) ∀ud ∈ DU , ∀sd ∈ DS , ∀da ∈ AD,

(∃udc, dsc ∈ C, (ud , udc) ∈ DICAU∧
(da, udc , dsc) ∈ ACAD ∧ (da, ud , sd) ∈ OP∧
(sd , dsc) ∈ DICAS)⇔ (da, ud , sd) ∈ AD

Data Access: stored data→ services
(da5) ∀sd ∈ DS , ∀sa ∈ AS , ∀s ∈ S,

(∃dsc , sc ∈ C, (sd , dsc) ∈ DICAS ∧ (s, sc) ∈ SCA∧
(sa, dsc , sc) ∈ ACAS)⇔ (sa, sd , s) ∈ ADS



Graph-Based CBDA Policies

CBDA policy graphs:

• nodes represent policy entities,

• edges represent relations defining how entities are categorised
and authorised/prohibited actions for each category of entities.

Graph elements are labelled

Types of nodes in a CBDA graph:



Graph-Based CBDA Policies

Well-typed graphs represent policies.
Paths of specific types define the authorised and prohibited actions
for each kind of data item and service.

Authorisation Path:

Prohibition Path:



Example CBDA Policy Graph



CBDA Policy Analysis/Queries and Enforcement

Policy queries answered by graph traversal.
Example Policy Content Query:
Are there (permitted or banned) actions assigned to each category?
Answer:
All the categories have some associated action if and only if each
node v of type C is in an authorisation or prohibition path.

Example Policy Effect Queries: Absence of conflict (mutually
exclusive actions a1, a2 on di are not permitted).
Answer:
Set of authorisation paths starting in di does not contain paths via
a1 and paths via a2.

Enforcement of privacy preferences:
service obligation policy matches CBDA policy



Conclusions - Future work

• Categorisation: powerful abstraction mechanism
• Future work:

• Policy languages / Usability
• Policy enforcement / obligations: privacy
• Negotiation: Risk-Benefit Analysis - optimal policy
• Policy Mining
• Policy composition . . .

This talk is based on:
- Bertolissi and F. A metamodel of access control for distributed environments.
Information and Computation 2014
- Alves and F. A graph-based framework for the analysis of access control
policies. Theoretical Computer Science 2017
- Alves and F. An Expressive Model for the Specification and Analysis of
Obligations. Preprint 2023
- F., Jaimunk, Thuraisingham. A Privacy-Preserving Architecture and
Data-Sharing Model for Cloud-IoT Applications. IEEE TDSC 2022



Conclusions - Future work

• Categorisation: powerful abstraction mechanism
• Future work:

• Policy languages / Usability
• Policy enforcement / obligations: privacy
• Negotiation: Risk-Benefit Analysis - optimal policy
• Policy Mining
• Policy composition . . .

This talk is based on:
- Bertolissi and F. A metamodel of access control for distributed environments.
Information and Computation 2014
- Alves and F. A graph-based framework for the analysis of access control
policies. Theoretical Computer Science 2017
- Alves and F. An Expressive Model for the Specification and Analysis of
Obligations. Preprint 2023
- F., Jaimunk, Thuraisingham. A Privacy-Preserving Architecture and
Data-Sharing Model for Cloud-IoT Applications. IEEE TDSC 2022


	Policy Analysis using Graphs
	Conclusions

