
APETEEt:
Secure Enforcement of

ABAC Policies Using TEE
Pritkumar Godhani, Rahul Bharadhwaj, Shamik Sural

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

CONTENTS

● Introduction

● Related Work

● Proposed Framework: APETEEt

● Design and Implementation

● Experiments

● Conclusion and Future Directions

ATTRIBUTE BASED ACCESS CONTROL

● Modern access control framework, known for flexibility.

● Incorporates:
○ SUBJECT: the user/entity requesting access

○ OBJECT: the resource that is being requested for access

○ ENVIRONMENT: the environment conditions under which the access

request is made

○ ACTION: the type of access that is being requested

● Provides:
○ Context-Aware Decisions

○ Dynamic Access Control

○ Fine-Grained Policies

ABAC MECHANISMS

● Typically, ABAC mechanisms are

subdivided into four functionally

separate components.

● Each may run on separate machines

that may or may not be co-geolocated.

● Data repositories are used to manage

and store data concerning the access

control mechanism (ACM):
○ Policy Rules

○ Attributes of Users, Objects

○ Environment Context Detectors

MOTIVATION

● Hosting ACMs on cloud and other

remote infrastructures create issues of

trust and security.

● In layered computer architectures, the

lower, more privileged layers have full

control over the resources of the layers

higher up.

● Widens the trusted computing base,

broadens the attack surface.

● Spooky action at a distance…

MOTIVATION (contd.)

● Using hardware security features like
trusted execution environments (TEEs)
can reduce the trusted computing base.

● TEE exists outside the privilege
hierarchy and is supported directly on
the hardware.

● TEEs use cryptographic encryption and
decryption to communicate with
untrusted code.

● Executions done in TEE can be verified
by using signed attestation certificates.

● Examples: TPM, Intel SGX

RELATED WORK

● TEE Protected Storage Systems:

○ Block Level : Mose (Hoang et al, 2020)

○ File Level : SecureFS (Kumar et al, 2021)

● Joplin (Djoko, 2020) — uses client side enclaves to ensure

security of operations done on a server stored data.

APETEEt:
ABAC Policy Evaluation using Trusted Execution
Environment
● Separate access control execution in a secure enclave on the

server

● Create trust and security in the access control module

● Securely build policies, and evaluate them inside TEE
○ Ability to generate attestation certificates when required.

● No assumptions on underlying resource

● Servers enabling APETEEt do not need to change file system or

disk drivers.
○ No huge configuration change

PROPOSED FRAMEWORK: APETEEt

DESIGN OF APETEEt

● Lightweight, modular and secure design

● Arbitrary policies can be securely built inside SGX enclaves

● Access requests on these policies can be securely evaluated via ecalls to

the above defined enclaves

● Designed for infrastructure providers; acts as a utility for application

developers to secure their access control mechanism

DESIGN OF APETEEt (contd.)

● Policies are built from the set of rules into an N-ary Policy Tree (PolTree).

● PolTree allow efficient evaluation of access requests.
○ Each non-leaf node acts a decision node depending on a fixed attribute.

○ Each possible value of this attribute is a child.

○ Each leaf node grants an access.

● Evaluation of access requests takes time equal to the depth of the tree, i.e.,

the number of attributes.

● This PolTree resides in the SGX enclave, once built after a build request.
○ SGX storage sealing is used for persistence across executions.

IMPLEMENTATION
● We release the core APETEEt enclave codes plus C++ wrapper

functions;
○ We also release a sample Flask application that support the build and

evaluate endpoints.

● Implemented on Ubuntu v20.04 with Intel SGX SDK for Linux.

● ECalls and OCalls only accept string buffers as data.
○ Special data structures wrapping attribute maps

○ Specified using a special Enclave Description Language

● Core APETEEt module consists of the SGX Enclave code and the

wrapper functions written in C++; compiled to a object file.
○ Other languages can use linking utilities or libraries (such as pybind11 for

Python).

EXPERIMENTS

● A policy generator module is implemented.

○ Given number of attributes and number of values, generates a consistent policy of a

required number of rules.

● The number of rules, the number of attributes and the number of cumulative

requests are varied pairwise, and the average time to process one request is

measured.

● Results shows that APETEEt is scalable and efficient.

● Rules can be expressed in easy format JSON files.

○ Design can be easily modified to support XACML policies as well.

EXPERIMENTS

● For fixed number of attributes, the

time taken for different number of

cumulative requests for different

rule set sizes is plotted.

● Result shows that number of

requests made do not affect the time

per request and that APETEEt is

highly scalable.

EXPERIMENTS

● Next, the effect of number of attributes

on the request evaluation latency for a

fixed number of rules is measured.

● Since, PolTree evaluation is linear in the

number of attributes, the same

variance is observed when number of

attributes are increased.

EXPERIMENTS

● Finally, we look at how the number of

rules in the policy affect the request

latency for a fixed number of attributes.

● Since, PolTree depth is not affected by

the number of rules but only by the

number of attributes, the request

latency remains unaffected by increase

in the policy size.

CONCLUSION & FURTHER

● APETEEt secures ABAC policies on the server side in a

lightweight fashion.

● It avoids re-configuration changes on servers; works

seamlessly as a wrapper on the server-hosted application

code.

Security of Intel SGX enclaves and communication channels are

orthogonally applied to APETEEt. Other parts of ACM into the

enclave; customizable design according to developer needs.

Thank
You

APPENDIX

(A) Make-Policy Sequence Diagram
(B) Evaluate-Request
 Sequence Diagram

