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Data ...

> ore data = More accurate model

> Restrictions on collecting real data:
1. Regulations
2. Privacy concerns
3. Competitive advantage

4. Liability
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Possible solutions?

SOLUTIONS FOR THE LACK 0
MACHINE LEARNING DATASETS

Data Transfer
Augmentation Learning

Simulated
Datasets

Open-source
Datasets

+ Synthetic data!
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Synthetic images

Real images

)

https://www.nature.com/articles/s41551-021-00751-8
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Generative Adversarial Networks (GAN)

A class of machine learning frameworks
by Ian Goodfellow in 2014. o ) e B I O S

Sensitive data _ Discriminator
N

Latent
Distribution

Two deep neural networks, generator (G)
and discriminator (D).

Generator

Zero-sum game between discriminator
and generator.

Generator learns to produce new data with
the same statistics as the training set.

Computationally expensive.
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> But in the real world data is often distributed across
multiple data holders.

Computing
Server

Privacy? @ @ @ @

Data holder 1 Data holder 2 Data holder 3 Data holder 4
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Federated Learning

FL Server

Local Update

W1 Local Update
Aw'

https://www.mdpi.
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Privacy Attacks Against ML and FL

Reconstruction Attacks
Membership Inference Attacks

v

v

v

Property Inference Attacks

Inference attack
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Threat Model

1. Aggregation Server
2. Client (data owners)

Honest-but-curious:

> Follow the protocol and not deviate from the protocol steps

> May extract information about private data by analyzing the
output or intermediate results
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Possible Solutions

> Encryption-based technique:

« Homomorphic Encryption
« Multi-Party Computation

> Perturbation-based techniques:
 Differential Privacy
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Homomorphic Encryption (HE)

> Allows users to perform computations over encrypted data without
decrypting it.

> The result of computation remains in encrypted form.

>~ We use CKKS scheme in this work.
> CKKS uses polynomial approximation

> Ability to perform computation on large-scale continuous data,
such as matrices.

> CKKS is Leveled HE scheme that supports a fixed number of
"multiplication depth" levels.
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Federated GAN + HE
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All the issues solved?

> Can homomorphic encryption also protect the
sensitive data against semi-honest client?

> No!

> Solution?

> Differential Privacy.
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Differential Privacy (DP)

> A mathematical framework for protecting the privacy
by adding random noise

> Enables data analysis while protecting the privacy of
sensitive information

A process A is ¢-differentially private if for all databases D; and D, which differ in only one
individual:

P A(Dl) = < e P A(D2 =
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Differential Privacy (DP)

> Adding Gaussian noise during the model training

. . .  Client 1 S—
> Only to discriminator 1= - —
: /\ | Sensitive data : Dis_r(:l"ai:::;tor L
g(t ) := VoL (0,w) (Compute the per-sample gradients)

g(t) =Ag.C g(t) = clip g(t),C + N (0,0%C%I)  (Clipping and noise addition )
9(t+1) = 9(t) _pp . 5(®) (Gradient descent step)
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Training overhead

Model Number of Parameters | Before Enc. (MB) | After Enc. (MB) | Encryption time (s)
Discriminator 109440 0.432 708.34 6.1
Generator 312256 1.2 708.79 10.2

Each round Each round | 10 rounds
(Client-side) | (Server-side) | training

FedGAN 26 - 261
FedGAN + HE 36 115 1531
FedGAN + DP 78 - 784

PP-FedGAN 89 115 2096
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Traning time (minute)

M FED-GAN
200 { mmm PP-FEDGAN
s PRIV-FEDGAN

6
Number of clients
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Evaluating the output quality

> The Inception Score (IS)
> Fréchet Inception Distance (FID)
> Kernel Inception Distance (KID)
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Conclusion

> A hybrid privacy-preserving synthetic data generation framework
> Utilizes homomorphic encryption and differential privacy
> Guarantees against semi-honest adversaries

> High quality output

> 30% better training performance than existing work
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