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Machine Learning
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Data …
› More data = More accurate model

› Restrictions on collecting real data:
1. Regulations
2. Privacy concerns
3. Competitive advantage
4. Liability
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Possible solutions?

+ Synthetic data!



4https://www.nature.com/articles/s41551-021-00751-8
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Generative Adversarial Networks (GAN)

A class of machine learning frameworks 
by Ian Goodfellow in 2014.

Zero-sum game between discriminator 
and generator.

Generator learns to produce new data with 
the same statistics as the training set.

Two deep neural networks, generator (G) 
and discriminator (D).

Computationally expensive.
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Do we have enough data?
› But in the real world data is often distributed across 

multiple data holders.

Privacy?
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Federated Learning

https://www.mdpi.com/2079-9292/11/4/670
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Federated GAN
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Privacy Attacks Against ML and FL
› Reconstruction Attacks
› Membership Inference Attacks
› Property Inference Attacks
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Threat Model
1. Aggregation Server
2. Client (data owners)

Honest-but-curious:
› Follow the protocol and not deviate from the protocol steps
› May extract information about private data by analyzing the 

output or intermediate results
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Possible Solutions
› Encryption-based technique:

• Homomorphic Encryption
• Multi-Party Computation

› Perturbation-based techniques:
• Differential Privacy
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Homomorphic Encryption (HE)
› Allows users to perform computations over encrypted data without 

decrypting it.
› The result of  computation remains in encrypted form.

› We use CKKS scheme in this work.
› CKKS uses polynomial approximation 
› Ability to perform computation on large-scale continuous data, 

such as matrices.
› CKKS is Leveled HE scheme that supports a fixed number of 

"multiplication depth" levels.
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Federated GAN + HE
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All the issues solved?
› Can homomorphic encryption also protect the 

sensitive data against semi-honest client?
› No!

› Solution? 
› Differential Privacy.
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Differential Privacy (DP)
› A mathematical framework for protecting the privacy 

by adding random noise
› Enables data analysis while protecting the privacy of 

sensitive information
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Differential Privacy (DP)
› Adding Gaussian noise during the model training

› Only to discriminator
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Federated GAN + HE + DP = (PP-FedGAN)
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Experiments
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Training overhead 
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Performance overhead
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Evaluating the output quality

› The Inception Score (IS)
› Fréchet Inception Distance (FID) 
› Kernel Inception Distance (KID) 
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Conclusion
› A hybrid privacy-preserving synthetic data generation framework 

› Utilizes homomorphic encryption and differential privacy 

› Guarantees against semi-honest adversaries

› High quality output

› 30% better training performance than existing work
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